Sustainable fishery


A conventional idea of a sustainable fishery is that it is one that is harvested at a sustainable rate, where the fish population does not decline over time because of fishing practices. Sustainability in fisheries combines theoretical disciplines, such as the population dynamics of fisheries, with practical strategies, such as avoiding overfishing through techniques such as individual fishing quotas, curtailing destructive and illegal fishing practices by lobbying for appropriate law and policy, setting up protected areas, restoring collapsed fisheries, incorporating all externalities involved in harvesting marine ecosystems into fishery economics, educating stakeholders and the wider public, and developing independent certification programs.
Some primary concerns around sustainability are that heavy fishing pressures, such as overexploitation and growth or recruitment overfishing, will result in the loss of significant potential yield; that stock structure will erode to the point where it loses diversity and resilience to environmental fluctuations; that ecosystems and their economic infrastructures will cycle between collapse and recovery; with each cycle less productive than its predecessor; and that changes will occur in the trophic balance.

Overview

Global wild fisheries are believed to have peaked and begun a decline, with valuable habitats, such as estuaries and coral reefs, in critical condition. Current aquaculture or farming of piscivorous fish, such as salmon, does not solve the problem because farmed piscivores are fed products from wild fish, such as forage fish. Salmon farming also has major negative impacts on wild salmon. Fish that occupy the higher trophic levels are less efficient sources of food energy.
A report at the High-level Political Forum on Sustainable Development in 2021 stated that: "Sustainable fisheries accounted for approximately 0.1 per cent of global GDP in 2017".

Defining sustainability

Three ways of defining a sustainable fishery exist:
  • Long term constant yield is the idea that undisturbed nature establishes a steady state that changes little over time. Properly done, fishing at up to maximum sustainable yield allows nature to adjust to a new steady state, without compromising future harvests. However, this view is naive, because constancy is not an attribute of marine ecosystems, which dooms this approach. Stock abundance fluctuates naturally, changing the potential yield over short and long-term periods.
  • Preserving intergenerational equity acknowledges natural fluctuations and regards as unsustainable only practices which damage the genetic structure, destroy habitat, or deplete stock levels to the point where rebuilding requires more than a single generation. Providing rebuilding takes only one generation, overfishing may be economically foolish, but it is not unsustainable. This definition is widely accepted.
  • Maintaining a biological, social and economic system considers the health of the human ecosystem as well as the marine ecosystem. A fishery which rotates among multiple species can deplete individual stocks and still be sustainable so long as the ecosystem retains its intrinsic integrity. Such a definition might consider as sustainable fishing practices that lead to the reduction and possible extinction of some species.

    Social sustainability

Fisheries and aquaculture are, directly or indirectly, a source of livelihood for over 500 million people, mostly in developing countries.
Social sustainability can conflict with biodiversity. A fishery is socially sustainable if the fishery ecosystem maintains the ability to deliver products the society can use. Major species shifts within the ecosystem could be acceptable as long as the flow of such products continues. Humans have been operating such regimes for thousands of years, transforming many ecosystems, depleting or driving to extinction many species.
According to Hilborn, the "loss of some species, and indeed transformation of the ecosystem is not incompatible with sustainable harvests." For example, in recent years, barndoor skates have been caught as bycatch in the western Atlantic. Their numbers have severely declined and they will probably go extinct if these catch rates continue. Even if the barndoor skate goes extinct, changing the ecosystem, there could still be sustainable fishing of other commercial species.

Environmental sustainability

The focus of sustainable fishing is often on the fish. Other factors are sometimes included in the broader question of sustainability. The use of non-renewable resources is not fully sustainable. This might include diesel fuel for the fishing ships and boats: there is even a debate about the long term sustainability of biofuels. Modern fishing nets are usually made of artificial polyamides like nylon. Synthetic braided ropes are generally made from nylon, polyester, polypropylene or high performance fibers such as ultra high modulus polyethylene and aramid.
Energy and resources are employed in fish processing, refrigeration, packaging, logistics, etc. The methodologies of life-cycle assessment are useful to evaluate the sustainability of components and systems. These are part of the broad question of sustainability.

Obstacles

Overfishing

Overfishing can be sustainable. According to Hilborn, overfishing can be "a misallocation of societies' resources", but it does not necessarily threaten conservation or sustainability".
Overfishing is traditionally defined as harvesting so many fish that the yield is less than it would be if fishing were reduced. For example, Pacific salmon are usually managed by trying to determine how many spawning salmon, called the "escapement", are needed each generation to produce the maximum harvestable surplus. The optimum escapement is that needed to reach that surplus. If the escapement is half the optimum, then normal fishing looks like overfishing. But this is still sustainable fishing, which could continue indefinitely at its reduced stock numbers and yield. There is a wide range of escapement sizes that present no threat that the stock might collapse or that the stock structure might erode.
On the other hand, overfishing can precede severe stock depletion and fishery collapse. Hilborn points out that continuing to exert fishing pressure while production decreases, stock collapses and the fishery fails, is largely "the product of institutional failure".
Today over 70% of fish species are either fully exploited, overexploited, depleted, or recovering from depletion. If overfishing does not decrease, it is predicted that stocks of all species currently commercially fished for will collapse by 2048.
A Hubbert linearization has been applied to the whaling industry, as well as charting the price of caviar, which depends on sturgeon stocks. Another example is North Sea cod. Comparing fisheries and mineral extraction tells us that human pressure on the environment is causing a wide range of resources to go through a Hubbert depletion cycle.

Habitat modification

Nearly all the world's continental shelves, and large areas of continental slopes, underwater ridges, and seamounts, have had heavy bottom trawls and dredges repeatedly dragged over their surfaces. For fifty years, governments and organizations, such as the Asian Development Bank, have encouraged the fishing industry to develop trawler fleets. Repeated bottom trawling and dredging literally flattens diversity in the benthic habitat, radically changing the associated communities.

Changing the ecosystem balance

Since 1950, 90 percent of 25 species of big predator fish have gone.
Rising ocean temperatures and ocean acidification are radically altering aquatic ecosystems. Climate change is modifying fish distribution and the productivity of marine and freshwater species. This reduces sustainable catch levels across many habitats, puts pressure on resources needed for aquaculture, on the communities that depend on fisheries, and on the oceans' ability to capture and store carbon. Sea level rise puts coastal fishing communities at risk, while changing rainfall patterns and water use impact on inland fisheries and aquaculture. As climate change causes oceans to warm up, fish are forced to move away, into cooler Northern waters. This can cause overcrowding in these areas.

Ocean pollution

A recent survey of global ocean health concluded that all parts of the ocean have been affected by human development and that 41 percent has been fouled with human polluted runoff, overfishing, and other abuses. Pollution is not easy to fix, because pollution sources are so dispersed, and are built into the economic systems we depend on.
The United Nations Environment Programme mapped the impacts of stressors such as climate change, pollution, exotic species, and over-exploitation of resources on the oceans. The report shows at least 75 percent of the world's key fishing grounds may be affected.

Diseases and toxins

Large predator fish can contain significant amounts of mercury, a neurotoxin which can affect fetal development, memory, mental focus, and produce tremors.

Irrigation

Lakes are dependent on the inflow of water from its drainage basin. In some areas, aggressive irrigation has caused this inflow to decrease significantly, causing water depletion and a shrinking of the lake. The most notable example is the Aral Sea, formerly among the four largest lakes in the world, now only a tenth of its former surface area.

Remediation

Fisheries management

draws on fisheries science to enable sustainable exploitation. Modern fisheries management is often defined as mandatory rules based on concrete objectives and a mix of management techniques, enforced by a monitoring control and surveillance system.
  • Ideas and rules: Economist Paul Romer believes sustainable growth is possible providing the right ideas are combined with the right rules, rather than simply hectoring fishers. There has been no lack of innovative ideas about how to harvest fish. He characterizes failures as primarily failures to apply appropriate rules.
  • Fishing subsidies: Government subsidies influence many of the world fisheries. Operating cost subsidies allow European and Asian fishing fleets to fish in distant waters, such as West Africa. Many experts reject fishing subsidies and advocate restructuring incentives globally to help struggling fisheries recover.
  • Economics: Another focus of conservationists is on curtailing detrimental human activities by improving fisheries' market structure with techniques such as salable fishing quotas, like those set up by the Northwest Atlantic Fisheries Organization, or laws such as those listed below.
  • Valorization of by-catch: helping to avoid discards by valorizing by-catch products, as they are good sources for protein hydrolizates, peptones, enzymatic mixtures or fish oil being these products of interest different industrial sectors.
  • Payment for Ecosystem Services: Environmental economist Essam Y Mohammed argues that by creating direct economic incentives, whereby people are able to receive payment for the services their property provides, will help to establish sustainable fisheries around the world as well as inspire conservation where it otherwise would not.
  • Sustainable fisheries certification: A promising direction is the independent certification programs for sustainable fisheries conducted by organizations such as the Marine Stewardship Council and Friend of the Sea. These programs work at raising consumer awareness and insight into the nature of their seafood purchases.
  • Ecosystem based fisheries: See next section