Escapement
An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.
The first mechanical escapement, the verge escapement, was invented in medieval Europe during the 13th century and was the crucial innovation that led to the development of the mechanical clock. The design of the escapement has a large effect on a timepiece's accuracy, and improvements in escapement design drove improvements in time measurement during the era of mechanical timekeeping from the 13th through the 19th century.
Escapements are also used in other mechanisms besides timepieces. Manual typewriters used escapements to step the carriage as each letter was typed.
History
The invention of the escapement was an important step in the history of technology, as it made the all-mechanical clock possible. The first all-mechanical escapement, the verge escapement, was invented in 13th-century Europe. It allowed timekeeping methods to move from continuous processes such as the flow of water in water clocks, to repetitive oscillatory processes such as the swing of pendulums, enabling more accurate timekeeping. Oscillating timekeepers are the controlling devices in all modern clocks.Liquid-driven escapements
The earliest liquid-driven escapement was described by the Greek engineer Philo of Byzantium in the 3rd century BC in chapter 31 of his technical treatise Pneumatics, as part of a washstand. A counterweighted spoon, supplied by a water tank, tips over in a basin when full, releasing a spherical piece of pumice in the process. Once the spoon has emptied, it is pulled up again by the counterweight, closing the door on the pumice by the tightening string. Remarkably, Philo's comment that "its construction is similar to that of clocks" indicates that such escapement mechanisms were already integrated in ancient water clocks.In China, the Tang dynasty Buddhist monk Yi Xing, along with government official Liang Lingzan, made in 723 AD the escapement for the workings of a water-powered armillary sphere and clock drive, which was the world's first clockwork escapement. Song dynasty horologists Zhang Sixun and Su Song duly applied escapement devices for their astronomical clock towers in the 10th century, where water flowed into a container on a pivot. However, the technology later stagnated and retrogressed. According to historian Derek J. de Solla Price, the Chinese escapement spread west and was the source of Western escapement technology.
According to Ahmad Y. Hassan, a mercury escapement described in a Spanish document for Alfonso X in 1277 can be traced to earlier Arabic sources. Knowledge of these mercury escapements may have spread through Europe with translations of Arabic and Spanish texts.
However, none of these were true mechanical escapements, since they still depended on the flow of liquid through a hole to measure time. In these designs, a container tipped over each time it filled up, thus advancing the clock's wheels each time an equal quantity of water was measured out. The time between releases depended on the rate of flow, as do all liquid clocks. The rate of flow of a liquid through a hole varies with temperature and viscosity changes and decreases with pressure as the level of liquid in the source container drops. The development of mechanical clocks depended on the invention of an escapement which would allow a clock's movement to be controlled by an oscillating weight, which would stay constant.
Mechanical escapements
The first mechanical escapement, the verge escapement, was used in a bell-ringing apparatus called an alarum for several centuries before it was adapted to clocks. Some sources claim that French architect Villard de Honnecourt invented the first escapement in 1237, citing a drawing of a rope linkage to turn a statue of an angel to follow the sun, found in his notebooks; however, the consensus is that this was not an escapement.Astronomer Robertus Anglicus wrote in 1271 that clockmakers were trying to invent an escapement, but had not yet been successful. Records in financial transactions for the construction of clocks point to the late 13th century as the most likely date for when tower clock mechanisms transitioned from water clocks to mechanical escapements. Most sources agree that mechanical escapement clocks existed by 1300.
However, the earliest available description of an escapement was not a verge escapement, but a variation called a strob escapement. Described in Richard of Wallingford's 1327 manuscript Tractatus Horologii Astronomici on the clock that he built at the Abbey of St. Albans, this escapement consisted of a pair of escape wheels on the same axle, with alternating radial teeth. The verge rod was suspended between them, with a short crosspiece that rotated first in one direction and then the other as the staggered teeth pushed past. Although no other example is known, it is possible that this was the first clock escapement design.
The verge became the standard escapement used in all other early clocks and watches, and remained the only known escapement for 400 years. Its performance was limited by friction and recoil, but most importantly, the early balance wheels used in verge escapements, known as the foliot, lacked a balance spring and thus had no natural "beat", severely limiting their timekeeping accuracy.
A great leap in the accuracy of escapements happened after 1657, due to the invention of the pendulum and the addition of the balance spring to the balance wheel, which made the timekeepers in both clocks and watches harmonic oscillators. The resulting improvement in timekeeping accuracy enabled greater focus on the accuracy of the escapement. The next two centuries, the "golden age" of mechanical horology, saw the invention of over 300 escapement designs, although only about ten of these were ever widely used in clocks and watches.
The invention of the crystal oscillator and the quartz clock in the 1920s, which became the most accurate clock by the 1930s, shifted technological research in timekeeping to electronic methods, and escapement design ceased to play a role in advancing timekeeping precision.
Reliability
The reliability of an escapement depends on the quality of workmanship and the level of maintenance given. A poorly constructed or poorly maintained escapement will cause problems. The escapement must accurately convert the oscillations of the pendulum or balance wheel into rotation of the clock or watch gear train, and it must deliver enough energy to the pendulum or balance wheel to maintain its oscillation.In many escapements, the unlocking of the escapement involves sliding motion; for example, in the animation shown above, the pallets of the anchor slide against the escapement wheel teeth as the pendulum swings. The pallets are often made of very hard materials such as polished stone, but even so, they normally require lubrication. Since lubricating oil degrades over time due to evaporation, dust, and oxidation, periodic re-lubrication is needed. If this is not done, the timepiece may work unreliably or stop altogether, and the escapement components may be subjected to rapid wear. The increased reliability of modern watches is due primarily to the higher-quality oils used for lubrication. Lubricant lifetimes can be greater than five years in a high-quality watch.
Some escapements avoid sliding friction, such as the grasshopper escapement of John Harrison in the 18th century. These designs may avoid the need for lubrication in the escapement.
Accuracy
The accuracy of a mechanical clock is dependent on the accuracy of the timing device. If this is a pendulum, then the pendulum's period of swing determines the accuracy. If the pendulum rod is made of metal, it will expand and contract with heat, lengthening or shortening the pendulum; this changes the time taken for a swing. Special alloys are used in expensive pendulum-based clocks to minimize this distortion. The degrees of arc in which a pendulum may swing varies; highly accurate pendulum-based clocks have very small arcs in order to minimize the circular error.Pendulum-based clocks can achieve outstanding accuracy. Even into the 20th century, pendulum-based clocks were reference timepieces in laboratories.
Escapements play a big part in accuracy as well. The precise point in the pendulum's travel at which impulse is supplied will affect how closely to time the pendulum will swing. Ideally, the impulse should be evenly distributed on either side of the lowest point of the pendulum's swing. This is called "being in beat." This is because pushing a pendulum when it is moving towards mid-swing makes it gain, whereas pushing it while it is moving away from mid-swing makes it lose. If the impulse is evenly distributed then it gives energy to the pendulum without changing the time of its swing.
The pendulum's period depends slightly on the size of the swing. If the amplitude changes from 4° to 3°, the period of the pendulum will decrease by about 0.013 percent, which translates into a gain of about 12 seconds per day. This is caused by the restoring force on the pendulum being circular not linear; thus, the period of the pendulum is only approximately linear in the regime of the small angle approximation. To be time-independent, the path must be cycloidal. To minimize the effect with amplitude, pendulum swings are kept as small as possible.
As a rule, whatever the method of impulse, the action of the escapement should have the smallest effect on the oscillator that can be achieved. This effect, which all escapements have to a larger or smaller degree, is known as the escapement error.
Any escapement with sliding friction will need lubrication, but as this deteriorates the friction will increase, and, perhaps, insufficient power will be transferred to the timing device. If the timing device is a pendulum, the increased frictional forces will decrease the Q factor, increasing the resonance band, and decreasing its precision. For spring-driven clocks, the impulse force applied by the spring changes as the spring is unwound, following Hooke's law. For gravity-driven clocks, the impulse force also increases as the driving weight falls and more chain suspends the weight from the gear train; in practice, however, this effect is only seen in large public clocks, and it can be avoided by a closed-loop chain.
Watches and smaller clocks do not use pendulums as the timing device. Instead, they use a balance spring: a fine spring connected to a metal balance wheel that oscillates. Most modern mechanical watches have a working frequency of 3–4 Hz or 6–8 beats per second. Faster or slower speeds are used in some watches. The working frequency depends on the balance spring's stiffness ; to keep time, the stiffness should not vary with temperature. Consequently, balance springs use sophisticated alloys; in this area, watchmaking is still advancing. As with the pendulum, the escapement must provide a small kick each cycle to keep the balance wheel oscillating. Also, the same lubrication problem occurs over time; the watch will lose accuracy when the escapement lubrication starts to fail.
Pocket watches were the predecessor of modern wristwatches. Pocket watches, being in the pocket, were usually in a vertical orientation. Gravity causes some loss of accuracy as it magnifies over time any lack of symmetry in the weight of the balance. The tourbillon was invented to minimize this: the balance and spring are put in a cage that rotates, smoothing gravitational distortions. This very clever and sophisticated clockwork is a prized complication in wristwatches, even though the natural movement of the wearer tends to smooth gravitational influences anyway.
The most accurate commercially produced mechanical clock was the electromechanical Shortt-Synchronome free pendulum clock invented by W. H. Shortt in 1921, which had an uncertainty of about 1 second per year. The most accurate mechanical clock to date is probably the electromechanical Littlemore Clock, built by noted archaeologist E. T. Hall in the 1990s. In Hall's paper, he reports an uncertainty of 3 parts in 109 measured over 100 days. Both of these clocks are electromechanical clocks: they use a pendulum as the timekeeping element, but electrical power rather than a mechanical gear train to supply energy to the pendulum.