Superconductivity
Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.
The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete cancellation of the magnetic field in the interior of the superconductor during its transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the idealization of perfect conductivity in classical physics.
In 1986, it was discovered that some cuprate-perovskite ceramic materials have a critical temperature above. It was shortly found that replacing the lanthanum with yttrium, i.e. making YBCO, raised the critical temperature to, which was important because liquid nitrogen could then be used as a refrigerant. Such a high transition temperature is theoretically impossible for a conventional superconductor, leading the materials to be termed high-temperature superconductors. The cheaply available coolant liquid nitrogen boils at and thus the existence of superconductivity at higher temperatures than this facilitates many experiments and applications that are less practical at lower temperatures.
History
Superconductivity was discovered on April 8, 1911, by Heike Kamerlingh Onnes, who was studying the resistance of solid mercury at cryogenic temperatures using the recently produced liquid helium as a refrigerant. At the temperature of 4.2 K, he observed that the resistance abruptly disappeared. In the same experiment, he also observed the superfluid transition of helium at 2.2 K, without recognizing its significance. The precise date and circumstances of the discovery were only reconstructed a century later, when was found. In subsequent decades, superconductivity was observed in several other materials. In 1913, lead was found to superconduct at 7 K, and in 1941 niobium nitride was found to superconduct at 16 K.Great efforts have been devoted to finding out how and why superconductivity works; the important step occurred in 1933, when Meissner and Ochsenfeld discovered that superconductors expelled applied magnetic fields, a phenomenon which has come to be known as the Meissner effect. In 1935, Fritz and Heinz London showed that the Meissner effect was a consequence of the minimization of the electromagnetic free energy carried by superconducting current.
London constitutive equations
The theoretical model that was first conceived for superconductivity was completely classical: it is summarized by London constitutive equations. It was put forward by the brothers Fritz and Heinz London in 1935, shortly after the discovery that magnetic fields are expelled from superconductors. A major triumph of the equations of this theory is their ability to explain the Meissner effect, wherein a material exponentially expels all internal magnetic fields as it crosses the superconducting threshold. By using the London equation, one can obtain the dependence of the magnetic field inside the superconductor on the distance to the surface.The two constitutive equations for a superconductor by London are:
The first equation follows from Newton's second law for superconducting electrons.
Conventional theories (1950s)
During the 1950s, theoretical condensed matter physicists arrived at an understanding of "conventional" superconductivity, through a pair of remarkable and important theories: the phenomenological Ginzburg–Landau theory and the microscopic BCS theory.In 1950, the phenomenological Ginzburg–Landau theory of superconductivity was devised by Landau and Ginzburg. This theory, which combined Landau's theory of second-order phase transitions with a Schrödinger-like wave equation, had great success in explaining the macroscopic properties of superconductors. In particular, Abrikosov showed that Ginzburg–Landau theory predicts the division of superconductors into the two categories now referred to as Type I and Type II. Abrikosov and Ginzburg were awarded the 2003 Nobel Prize for their work. The four-dimensional extension of the Ginzburg–Landau theory, the Coleman-Weinberg model, is important in quantum field theory and cosmology.
Also in 1950, Maxwell and Reynolds et al. found that the critical temperature of a superconductor depends on the isotopic mass of the constituent element. This important discovery pointed to the electron–phonon interaction as the microscopic mechanism responsible for superconductivity.
The complete microscopic theory of superconductivity was finally proposed in 1957 by Bardeen, Cooper and Schrieffer. This BCS theory explained the superconducting current as a superfluid of Cooper pairs, pairs of electrons interacting through the exchange of phonons. For this work, the authors were awarded the Nobel Prize in 1972.
The BCS theory was set on a firmer footing in 1958, when N. N. Bogolyubov showed that the BCS wavefunction, which had originally been derived from a variational argument, could be obtained using a canonical transformation of the electronic Hamiltonian. In 1959, Lev Gor'kov showed that the BCS theory reduced to the Ginzburg–Landau theory close to the critical temperature.
Generalizations of BCS theory for conventional superconductors form the basis for the understanding of the phenomenon of superfluidity, because they fall into the lambda transition universality class. The extent to which such generalizations can be applied to unconventional superconductors is still controversial.
Niobium
The first practical application of superconductivity was developed in 1954 with Dudley Allen Buck's invention of the cryotron. Two superconductors with greatly different values of the critical magnetic field are combined to produce a fast, simple switch for computer elements.Soon after discovering superconductivity in 1911, Kamerlingh Onnes attempted to make an electromagnet with superconducting windings but found that relatively low magnetic fields destroyed superconductivity in the materials he investigated. Much later, in 1955, G. B. Yntema succeeded in constructing a small 0.7-tesla iron-core electromagnet with superconducting niobium wire windings. Then, in 1961, J. E. Kunzler, E. Buehler, F. S. L. Hsu, and J. H. Wernick made the startling discovery that, at 4.2 kelvin, niobium–tin, a compound consisting of three parts niobium and one part tin, was capable of supporting a current density of more than 100,000 amperes per square centimeter in a magnetic field of 8.8 tesla. The alloy was brittle and difficult to fabricate, but niobium–tin proved useful for generating magnetic fields as high as 20 tesla.
In 1962, T. G. Berlincourt and R. R. Hake discovered that more ductile alloys of niobium and titanium are suitable for applications up to 10 tesla. Commercial production of niobium–titanium supermagnet wire immediately commenced at Westinghouse Electric Corporation and at Wah Chang Corporation. Although niobium–titanium boasts less-impressive superconducting properties than those of niobium–tin, niobium–titanium became the most widely used "workhorse" supermagnet material, in large measure a consequence of its very high ductility and ease of fabrication. However, both niobium–tin and niobium–titanium found wide application in MRI medical imagers, bending and focusing magnets for enormous high-energy-particle accelerators, and other applications. Conectus, a European superconductivity consortium, estimated that in 2014, global economic activity for which superconductivity was indispensable amounted to about five billion euros, with MRI systems accounting for about 80% of that total.
Josephson effect
In 1962, Josephson made the important theoretical prediction that a supercurrent can flow between two pieces of superconductor separated by a thin layer of insulator. This phenomenon, now called the Josephson effect, is exploited by superconducting devices such as SQUIDs. It is used in the most accurate available measurements of the magnetic flux quantum Φ0 = h/, where h is the Planck constant. Coupled with the quantum Hall resistivity, this leads to a precise measurement of the Planck constant. Josephson was awarded the Nobel Prize for this work in 1973.In 2008, it was proposed that the same mechanism that produces superconductivity could produce a superinsulator state in some materials, with almost infinite electrical resistance. The first development and study of superconducting Bose–Einstein condensate in 2020 suggested a "smooth transition between" BEC and Bardeen-Cooper-Shrieffer regimes.
2D materials
Multiple types of superconductivity are reported in devices made of single-layer materials. Some of these materials can switch between conducting, insulating, and other behaviors.Twisting materials imbues them with a "moiré" pattern involving tiled hexagonal cells that act like atoms and host electrons. In this environment, the electrons move slowly enough for their collective interactions to guide their behavior. When each cell has a single electron, the electrons take on an antiferromagnetic arrangement; each electron can have a preferred location and magnetic orientation. Their intrinsic magnetic fields tend to alternate between pointing up and down. Adding electrons allows superconductivity by causing Cooper pairs to form. Fu and Schrade argued that electron-on-electron action was allowing both antiferromagnetic and superconducting states.
The first success with 2D materials involved a twisted bilayer graphene sheet. A twisted three-layer graphene device was later shown to superconduct. Then an untwisted trilayer graphene device was reported to superconduct. The latter was later shown to be tunable, easily reproducing behavior found in millions of other configurations. Directly observing what happens when electrons are added to a material or slightly weakening its electric field enables quick testing of an unprecedented number of recipes to see which lead to superconductivity.
In four and five layer rhombohedral graphene, a form of superconductivity with spontaneously broken time reversal symmetry known as "chiral superconductivity" was recently observed. These systems were not observed to have any superlattice effects, and they can flip between two possible magnetic states without exiting the superconducting phase. This is in strong contrast to other observations of superconductivity and magnetic fields.
These devices have applications in quantum computing.
2D materials other than graphene have also been made to superconduct. Transition metal dichalcogenide sheets twisted at 5 degrees intermittently achieved superconduction by creating a Josephson junction. The device used used thin layers of palladium to connect to the sides of a tungsten telluride layer surrounded and protected by boron nitride. Another group demonstrated superconduction in molybdenum telluride in 2D van der Waals materials using ferroelectric domain walls. The Tc was implied to be higher than typical TMDs.
A Cornell group added a 3.5-degree twist to an insulator that allowed electrons to slow down and interact strongly, leaving one electron per cell, exhibiting superconduction. Existing theories do not explain this behavior.
Fu and collaborators proposed that electrons arrange to form a repeating crystal that allows the electron grid to float independently of the background atomic nuclei and the electron grid to relax. Its ripples pair electrons the way phonons do, although this is unconfirmed.