Schrödinger equation
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, an Austrian physicist, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.
Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of the wave function, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave. The equation predicted bound states of the atom in agreement with experimental observations.
The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions. Other formulations of quantum mechanics include matrix mechanics, introduced by Werner Heisenberg, and the path integral formulation, developed chiefly by Richard Feynman. When these approaches are compared, the use of the Schrödinger equation is sometimes called "wave mechanics".
The equation given by Schrödinger is nonrelativistic because it contains a first derivative in time and a second derivative in space, and therefore space and time are not on equal footing. Paul Dirac incorporated special relativity and quantum mechanics into a single formulation that simplifies to the Schrödinger equation in the non-relativistic limit. This is the Dirac equation, which contains a single derivative in both space and time. Another partial differential equation, the Klein–Gordon equation, led to a problem with probability density even though it was a relativistic wave equation. The probability density could be negative, which is physically unviable. This was fixed by Dirac by taking the so-called square root of the Klein–Gordon operator and in turn introducing Dirac matrices. In a modern context, the Klein–Gordon equation describes spin-less particles, while the Dirac equation describes spin-1/2 particles.
Definition
Preliminaries
Introductory courses on physics or chemistry typically introduce the Schrödinger equation in a way that can be appreciated knowing only the concepts and notations of basic calculus, particularly derivatives with respect to space and time. A special case of the Schrödinger equation that admits a statement in those terms is the position-space Schrödinger equation for a single nonrelativistic particle in one dimension:Here, is a wave function, a function that assigns a complex number to each point at each time. The parameter is the mass of the particle, and is the potential energy function that represents the environment in which the particle exists. The constant is the imaginary unit, and is the reduced Planck constant, which has units of action.
File:Wavepacket-a2k4-en.gif|300px|thumb|Complex plot of a wave function that satisfies the nonrelativistic free Schrödinger equation with. For more details see wave packet
Broadening beyond this simple case, the mathematical formulation of quantum mechanics developed by Paul Dirac, David Hilbert, John von Neumann, and Hermann Weyl defines the state of a quantum mechanical system to be a vector belonging to a separable complex Hilbert space. This vector is postulated to be normalized under the Hilbert space's inner product, that is, in Dirac notation it obeys. The exact nature of this Hilbert space is dependent on the system – for example, for describing position and momentum the Hilbert space is the space of square-integrable functions, while the Hilbert space for the spin of a single proton is the two-dimensional complex vector space with the usual inner product.
Physical quantities of interest – position, momentum, energy, spin – are represented by observables, which are self-adjoint operators acting on the Hilbert space. A wave function can be an eigenvector of an observable, in which case it is called an eigenstate, and the associated eigenvalue corresponds to the value of the observable in that eigenstate. More generally, a quantum state will be a linear combination of the eigenstates, known as a quantum superposition. When an observable is measured, the result will be one of its eigenvalues with probability given by the Born rule: in the simplest case the eigenvalue is non-degenerate and the probability is given by, where is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by, where is the projector onto its associated eigenspace.
A momentum eigenstate would be a perfectly monochromatic wave of infinite extent, which is not square-integrable. Likewise a position eigenstate would be a Dirac delta distribution, not square-integrable and technically not a function at all. Consequently, neither can belong to the particle's Hilbert space. Physicists sometimes regard these eigenstates, composed of elements outside the Hilbert space, as "generalized eigenvectors". These are used for calculational convenience and do not represent physical states. Thus, a position-space wave function as used [|above] can be written as the inner product of a time-dependent state vector with unphysical but convenient "position eigenstates" :
Time-dependent equation
The form of the Schrödinger equation depends on the physical situation. The most general form is the time-dependent Schrödinger equation, which gives a description of a system evolving with time:where is time, is the state vector of the quantum system, and is an observable, the Hamiltonian operator.
The term "Schrödinger equation" can refer to both the general equation, or the specific nonrelativistic version. The general equation is indeed quite general, used throughout quantum mechanics, for everything from the Dirac equation to quantum field theory, by plugging in diverse expressions for the Hamiltonian. The specific nonrelativistic version is an approximation that yields accurate results in many situations, but only to a certain extent.
To apply the Schrödinger equation, write down the Hamiltonian for the system, accounting for the kinetic and potential energies of the particles constituting the system, then insert it into the Schrödinger equation. The resulting partial differential equation is solved for the wave function, which contains information about the system. In practice, the square of the absolute value of the wave function at each point is taken to define a probability density function. For example, given a wave function in position space as above, we have
Time-independent equation
The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for any state. Stationary states can also be described by a simpler form of the Schrödinger equation, the time-independent Schrödinger equation:where is the energy of the system. This is only used when the Hamiltonian itself is not dependent on time explicitly. However, even in this case the total wave function is dependent on time as explained in the section on [|linearity] below. In the language of linear algebra, this equation is an eigenvalue equation. Therefore, the wave function is an eigenfunction of the Hamiltonian operator with corresponding eigenvalue.
Properties
Linearity
The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combinationof the two state vectors where and are any complex numbers. Moreover, the sum can be extended for any number of state vectors. This property allows superpositions of quantum states to be solutions of the Schrödinger equation. Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of energy eigenstates, which are solutions of the time-independent Schrödinger equation. In this basis, a time-dependent state vector can be written as the linear combination
where are complex numbers and the vectors are solutions of the time-independent equation.
Unitarity
Holding the Hamiltonian constant, the Schrödinger equation has the solutionThe operator is known as the time-evolution operator, and it is unitary: it preserves the inner product between vectors in the Hilbert space. Unitarity is a general feature of time evolution under the Schrödinger equation. If the initial state is, then the state at a later time will be given by
for some unitary operator. Conversely, suppose that is a continuous family of unitary operators parameterized by. Without loss of generality, the parameterization can be chosen so that is the identity operator and that for any. Then depends upon the parameter in such a way that
for some self-adjoint operator, called the generator of the family. A Hamiltonian is just such a generator.
To see that the generator is Hermitian, note that with, we have
so is unitary only if, to first order, its derivative is Hermitian.
Changes of basis
The Schrödinger equation is often presented using quantities varying as functions of position, but as a vector-operator equation it has a valid representation in any arbitrary complete basis of kets in Hilbert space. As mentioned above, "bases" that lie outside the physical Hilbert space are also employed for calculational purposes. This is illustrated by the position-space and momentum-space Schrödinger equations for a nonrelativistic, spinless particle. The Hilbert space for such a particle is the space of complex square-integrable functions on three-dimensional Euclidean space, and its Hamiltonian is the sum of a kinetic-energy term that is quadratic in the momentum operator and a potential-energy term:Writing for a three-dimensional position vector and for a three-dimensional momentum vector, the position-space Schrödinger equation is
The momentum-space counterpart involves the Fourier transforms of the wave function and the potential:
The functions and are derived from by
where and do not belong to the Hilbert space itself, but have well-defined inner products with all elements of that space.
When restricted from three dimensions to one, the position-space equation is just the first form of the Schrödinger equation given above. The relation between position and momentum in quantum mechanics can be appreciated in a single dimension. In canonical quantization, the classical variables and are promoted to self-adjoint operators and that satisfy the canonical commutation relation
This implies that
so the action of the momentum operator in the position-space representation is. Thus, becomes a second derivative, and in three dimensions, the second derivative becomes the Laplacian.
The canonical commutation relation also implies that the position and momentum operators are Fourier conjugates of each other. Consequently, functions originally defined in terms of their position dependence can be converted to functions of momentum using the Fourier transform. In solid-state physics, the Schrödinger equation is often written for functions of momentum, as Bloch's theorem ensures the periodic crystal lattice potential couples with for only discrete reciprocal lattice vectors. This makes it convenient to solve the momentum-space Schrödinger equation at each point in the Brillouin zone independently of the other points in the Brillouin zone.