Graphene


Graphene is a variety of the element carbon which occurs naturally in small amounts. In graphene, the carbon forms a sheet of interlocked atoms as hexagons one carbon atom thick. The result resembles the face of a honeycomb. When many hundreds of graphene layers build up, they are called graphite.
Commonly known types of carbon are diamond and graphite. In 1947, the Canadian physicist P. R. Wallace suggested carbon could also exist in sheets. The German chemist Hanns-Peter Boehm and coworkers isolated single sheets from graphite, giving them the name graphene in 1986. In 2004, the material was characterized by Andre Geim and Konstantin Novoselov at the University of Manchester, England. They received the 2010 Nobel Prize in Physics for their experiments.
In technical terms, graphene is a carbon allotrope consisting of a single layer of atoms arranged in a honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating the presence of double bonds within the carbon structure.
Graphene is known for its exceptionally high tensile strength, electrical conductivity, transparency, and being the thinnest two-dimensional material in the world. Despite the nearly transparent nature of a single graphene sheet, graphite appears black because it absorbs all visible light wavelengths. On a microscopic scale, graphene is the strongest material ever measured.
The existence of graphene was first theorized in 1947 by Philip R. Wallace during his research on graphite's electronic properties, while the term graphene was first defined by Hanns-Peter Boehm in 1987. In 2004, the material was isolated and characterized by Andre Geim and Konstantin Novoselov at the University of Manchester using a piece of graphite and adhesive tape. In 2010, Geim and Novoselov were awarded the Nobel Prize in Physics for their "groundbreaking experiments regarding the two-dimensional material graphene". While small amounts of graphene are easy to produce using the method by which it was originally isolated, attempts to scale and automate the manufacturing process for mass production have had limited success out of concern for cost-effectiveness and quality control. The global graphene market was $9 million in 2012, with most of the demand from research and development in semiconductors, electronics, electric batteries, and composites.
The IUPAC advises using the term "graphite" for the three-dimensional material and reserving "graphene" for discussions about the properties or reactions of single-atom layers. A narrower definition, of "isolated or free-standing graphene", requires that the layer be sufficiently isolated from its environment, but would include layers suspended or transferred to silicon dioxide or silicon carbide.

History

Structure of graphite and its intercalation compounds

In 1859, Benjamin Brodie noted the highly lamellar structure of thermally reduced graphite oxide. Researchers used X-ray crystallography in an attempt to determine the structure of graphite. The lack of large single crystal graphite specimens contributed to the independent development of X-ray powder diffraction by Peter Debye and Paul Scherrer in 1915, and Albert Hull in 1916. However, neither of their proposed structures was correct. In 1918, Volkmar Kohlschütter and P. Haenni described the properties of graphite oxide paper. The structure of graphite was successfully determined from single-crystal X-ray diffraction by J. D. Bernal in 1924, while subsequent research tweaked the unit cell parameters.
The theory of graphene was first explored by P. R. Wallace in 1947 as a starting point for understanding the electronic properties of 3D graphite. The emergent massless Dirac equation was separately pointed out in 1984 by Gordon Walter Semenoff, and by David P. Vincenzo and Eugene J. Mele. Semenoff emphasized the occurrence in a magnetic field of an electronic Landau level precisely at the Dirac point. This level is responsible for the anomalous integer Quantum Hall effect.

Observations of thin graphite layers and related structures

images of thin graphite samples consisting of a few graphene layers were published by G. Ruess and F. Vogt in 1948. Eventually, single layers were also observed directly. Single layers of graphite were also observed by transmission electron microscopy within bulk materials, particularly inside soot obtained by chemical exfoliation.
From 1961 to 1962, Hanns-Peter Boehm published a study of extremely thin flakes of graphite. The study measured flakes as small as ~0.4 nm, which is around 3 atomic layers of amorphous carbon. This was the best possible resolution for TEMs in the 1960s. However, it is impossible to distinguish between suspended monolayer and multilayer graphene by their TEM contrasts, and the only known method is to analyze the relative intensities of various diffraction spots. The first reliable TEM observations of monolayers are likely given in references 24 and 26 of Geim and Novoselov's 2007 review.
In 1975, van Bommel et al. epitaxially grew a single layer of graphite on top of silicon carbide. Others grew single layers of carbon atoms on other materials. This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp2-bonded carbon atoms, as in free-standing graphene. However, there is significant charge transfer between the two materials and, in some cases, hybridization between the d-orbitals of the substrate atoms and π orbitals of graphene, which significantly alter the electronic structure compared to that of free-standing graphene.
Boehm et al. coined the term "graphene" for the hypothetical single-layer structure in 1986. The term was used again in 1987 to describe single sheets of graphite as a constituent of graphite intercalation compounds, which can be seen as crystalline salts of the intercalant and graphene. It was also used in the descriptions of carbon nanotubes by R. Saito and Mildred and Gene Dresselhaus in 1992, and in the description of polycyclic aromatic hydrocarbons in 2000 by S. Wang and others.
Efforts to make thin films of graphite by mechanical exfoliation started in 1990.
Initial attempts employed exfoliation techniques similar to the drawing method. Multilayer samples down to 10 nm in thickness were obtained.
In 2002, Robert B. Rutherford and Richard L. Dudman filed for a patent in the US on a method to produce graphene by repeatedly peeling off layers from a graphite flake adhered to a substrate, achieving a graphite thickness of. The key to success was the ability to quickly and efficiently identify graphene flakes on the substrate using optical microscopy, which provided a small but visible contrast between the graphene and the substrate.
Another U.S. patent was filed in the same year by Bor Z. Jang and Wen C. Huang for a method to produce graphene-based on exfoliation followed by attrition.
In 2014, inventor Larry Fullerton patented a process for producing single-layer graphene sheets by graphene's strong diamagnetic properties.

Full isolation and characterization

Graphene was properly isolated and characterized in 2004 by Andre Geim and Konstantin Novoselov at the University of Manchester. They pulled graphene layers from graphite with a common adhesive tape in a process called micro-mechanical cleavage, colloquially referred to as the Scotch tape technique. The graphene flakes were then transferred onto a thin silicon dioxide layer on a silicon plate. The silica electrically isolated the graphene and weakly interacted with it, providing nearly charge-neutral graphene layers. The silicon beneath the could be used as a "back gate" electrode to vary the charge density in the graphene over a wide range.
This work resulted in the two winning the Nobel Prize in Physics in 2010 for their groundbreaking experiments with graphene. Their publication and the surprisingly easy preparation method that they described, sparked a "graphene gold rush". Research expanded and split off into many different subfields, exploring different exceptional properties of the material—quantum mechanical, electrical, chemical, mechanical, optical, magnetic, etc.

Exploring commercial applications

Since the early 2000s, several companies and research laboratories have been working to develop commercial applications of graphene. In 2014, a National Graphene Institute was established with that purpose at the University of Manchester, with a £60 million initial funding. In North East England two commercial manufacturers, Applied Graphene Materials and Thomas Swan Limited have begun manufacturing. Cambridge Nanosystems is a large-scale graphene powder production facility in East Anglia.

Structure

Graphene is a single layer of carbon atoms tightly bound in a hexagonal honeycomb lattice. It is an allotrope of carbon in the form of a plane of sp2-bonded atoms with a molecular bond length =.
The area of a hexagon of side being, one hexagonal unit of graphene has an area of nm2. There are two carbon atoms per unit, together having a mass of mg. The density of graphene is therefore mg per square meter. A kilogram of graphene therefore has an area of m2 or 131.2 hectares.
In a graphene sheet, each atom is connected to its three nearest carbon neighbors by σ-bonds, and a delocalized π-bond, which contributes to a valence band that extends over the whole sheet. This type of bonding is also seen in polycyclic aromatic hydrocarbons. The valence band is touched by a conduction band, making graphene a semimetal with unusual electronic properties that are best described by theories for massless relativistic particles. Charge carriers in graphene show linear, rather than quadratic, dependence of energy on momentum, and field-effect transistors with graphene can be made that show bipolar conduction. Charge transport is ballistic over long distances; the material exhibits large quantum oscillations and large nonlinear diamagnetism.