Allopatric speciation


Allopatric speciation also called geographic speciation, vicariant speciation, or its earlier name the dumbbell modelis a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.
Various geographic changes can arise such as the movement of continents, and the formation of mountains, islands, bodies of water, or glaciers. Human activity such as agriculture or developments can also change the distribution of species populations. These factors can substantially alter a region's geography, resulting in the separation of a species population into isolated subpopulations. The vicariant populations then undergo genetic changes as they become subjected to different selective pressures, experience genetic drift, and accumulate different mutations in the separated populations' gene pools. The barriers prevent the exchange of genetic information between the two populations leading to reproductive isolation. If the two populations come into contact they will be unable to reproduce—effectively speciating. Other isolating factors such as population dispersal leading to emigration can cause speciation and is considered a special case of allopatric speciation called peripatric speciation.
Allopatric speciation is typically subdivided into two major models: vicariance and peripatric. These models differ from one another by virtue of their population sizes and geographic isolating mechanisms. The terms allopatry and vicariance are often used in biogeography to describe the relationship between organisms whose ranges do not significantly overlap, but are immediately adjacent to each other; they do not occur together or only occur within a narrow zone of contact. Historically, the language used to refer to modes of speciation directly reflected biogeographical distributions. As such, allopatry is a geographical distribution opposed to sympatry. Furthermore, the terms allopatric, vicariant, and geographical speciation are often used interchangeably in the scientific literature. This article will follow a similar theme, with the exception of special cases such as peripatric, centrifugal, among others.
Observation of nature creates difficulties in witnessing allopatric speciation from "start-to-finish" as it operates as a dynamic process. From this arises a host of issues in defining species, defining isolating barriers, measuring reproductive isolation, among others. Nevertheless, verbal and mathematical models, laboratory experiments, and empirical evidence overwhelmingly supports the occurrence of allopatric speciation in nature. Mathematical modeling of the genetic basis of reproductive isolation supports the plausibility of allopatric speciation; whereas laboratory experiments of Drosophila and other animal and plant species have confirmed that reproductive isolation evolves as a byproduct of natural selection.

Vicariance model

The notion of vicariant evolution was first developed by Venezuelan botanist Léon Croizat in the mid-twentieth century. The vicariance theory, which showed coherence along with the acceptance of plate tectonics in the 1960s, was developed by Croizat in the early 1950s as an explanation for the similarity of plants and animals found in South America and Africa by deducing that they had originally been a single population before the two continents drifted apart.
Currently, speciation by vicariance is widely regarded as the most common form of speciation; and is the primary model of allopatric speciation. Vicariance is a process by which the geographical range of an individual taxon, or a whole biota, is split into discontinuous populations by the formation of an extrinsic barrier to the exchange of genes: that is, a barrier arising externally to a species. These extrinsic barriers often arise from various geologic-caused, topographic changes such as: the formation of mountains ; the formation of rivers or bodies of water; glaciation; the formation or elimination of land bridges; the movement of continents over time ; or island formation, including sky islands. Vicariant barriers can change the distribution of species populations. Suitable or unsuitable habitat may be come into existence, expand, contract, or disappear as a result of global climate change or even large scale human activities. Such factors can alter a region's geography in substantial ways, resulting in the separation of a species population into isolated subpopulations. The vicariant populations may then undergo genotypic or phenotypic divergence as: different mutations arise in the gene pools of the populations, they become subjected to different selective pressures, and/or they independently undergo genetic drift. The extrinsic barriers prevent the exchange of genetic information between the two populations, potentially leading to differentiation due to the ecologically different habitats they experience; selective pressure then invariably leads to complete reproductive isolation. Furthermore, a species' proclivity to remain in its ecological niche through changing environmental conditions may also play a role in isolating populations from one another, driving the evolution of new lineages.
Allopatric speciation can be represented as the extreme on a gene flow continuum. As such, the level of gene flow between populations in allopatry would be, where equals the rate of gene exchange. In sympatry , while in parapatric speciation, represents the entire continuum, although some scientists argue that a classification scheme based solely on geographic mode does not necessarily reflect the complexity of speciation. Allopatry is often regarded as the default or "null" model of speciation, but this too is debated.

Reproductive isolation

Reproductive isolation acts as the primary mechanism driving genetic divergence in allopatry and can be amplified by divergent selection. Pre-zygotic and post-zygotic isolation are often the most cited mechanisms for allopatric speciation, and as such, it is difficult to determine which form evolved first in an allopatric speciation event. Pre-zygotic simply implies the presence of a barrier prior to any act of fertilization, while post-zygotic implies the prevention of successful inter-population crossing after fertilization. Since species pairs who diverged in allopatry often exhibit pre- and post-zygotic isolation mechanisms, investigation of the earliest stages in the life cycle of the species can indicate whether or not divergence occurred due to a pre-zygotic or post-zygotic factor. However, establishing the specific mechanism may not be accurate, as a species pair continually diverges over time. For example, if a plant experiences a chromosome duplication event, reproduction will occur, but sterile hybrids will result—functioning as a form of post-zygotic isolation. Subsequently, the newly formed species pair may experience pre-zygotic barriers to reproduction as selection, acting on each species independently, will ultimately lead to genetic changes making hybrids impossible. From the researcher's perspective, the current isolating mechanism may not reflect the past isolating mechanism.

Reinforcement

Reinforcement has been a contentious factor in speciation. It is more often invoked in sympatric speciation studies, as it requires gene flow between two populations. However, reinforcement may also play a role in allopatric speciation, whereby the reproductive barrier is removed, reuniting the two previously isolated populations. Upon secondary contact, individuals reproduce, creating low-fitness hybrids. Traits of the hybrids drive individuals to discriminate in mate choice, by which pre-zygotic isolation increases between the populations. Some arguments have been put forth that suggest the hybrids themselves can possibly become their own species: known as hybrid speciation. Reinforcement can play a role in all geographic modes of speciation as long as gene flow is present and viable hybrids can be formed. The production of inviable hybrids is a form of reproductive character displacement, under which most definitions is the completion of a speciation event.
Research has well established the fact that interspecific mate discrimination occurs to a greater extent between sympatric populations than it does in purely allopatric populations; however, other factors have been proposed to account for the observed patterns. Reinforcement in allopatry has been shown to occur in nature, albeit with less frequency than a classic allopatric speciation event. A major difficulty arises when interpreting reinforcement's role in allopatric speciation, as current phylogenetic patterns may suggest past gene flow. This masks possible initial divergence in allopatry and can indicate a "mixed-mode" speciation event—exhibiting both allopatric and sympatric speciation processes.

Mathematical models

Developed in the context of the genetic basis of reproductive isolation, mathematical scenarios model both prezygotic and postzygotic isolation with respect to the effects of genetic drift, selection, sexual selection, or various combinations of the three. Masatoshi Nei and colleagues were the first to develop a neutral, stochastic model of speciation by genetic drift alone. Both selection and drift can lead to postzygotic isolation, supporting the fact that two geographically separated populations can evolve reproductive isolation—sometimes occurring rapidly. Fisherian sexual selection can also lead to reproductive isolation if there are minor variations in selective pressures among each population.. Mathematical models concerning reproductive isolation-by distance have shown that populations can experience increasing reproductive isolation that correlates directly with physical, geographical distance. This has been exemplified in models of ring species; however, it has been argued that ring species are a special case, representing reproductive isolation-by distance, and demonstrate parapatric speciation instead—as parapatric speciation represents speciation occurring along a cline.