Biotechnology
Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms and parts thereof for products and services. Specialists in the field are known as biotechnologists.
The term biotechnology was first used by Károly Ereky in 1919 to refer to the production of products from raw materials with the aid of living organisms. The core principle of biotechnology involves harnessing biological systems and organisms, such as bacteria, yeast, and plants, to perform specific tasks or produce valuable substances.
Biotechnology has had a significant impact on many areas of society, from medicine to agriculture to environmental science. One of the key techniques used in biotechnology is genetic engineering, which allows scientists to modify the genetic makeup of organisms to achieve desired outcomes. This can involve inserting genes from one organism into another, and consequently, creating new traits or modifying existing ones.
Other important techniques used in biotechnology include tissue culture, which allows researchers to grow cells and tissues in the lab for research and medical purposes, and fermentation, which is used to produce a wide range of products such as beer, wine, and cheese.
The applications of biotechnology are diverse and have led to the development of products like life-saving drugs, biofuels, genetically modified crops, and innovative materials. It has also been used to address environmental challenges, such as developing biodegradable plastics and using microorganisms to clean up contaminated sites.
Biotechnology is a rapidly evolving field with significant potential to address pressing global challenges and improve the quality of life for people around the world; however, despite its numerous benefits, it also poses ethical and societal challenges, such as questions around genetic modification and intellectual property rights. As a result, there is ongoing debate and regulation surrounding the use and application of biotechnology in various industries and fields.
Biotechnology encompasses a wide range of procedures for modifying living organisms for human purposes, going back to domestication of animals, the cultivation of plants, and "improvements" to these through breeding programs that employ artificial selection and hybridization. Modern usage also includes genetic engineering, as well as cell and tissue culture technologies. The American Chemical Society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms, such as pharmaceuticals, crops, and livestock. As per the European Federation of Biotechnology, biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and services. Biotechnology is based on the basic biological sciences and conversely provides methods to support and perform basic research in biology.
Biotechnology is the research and development in the laboratory using bioinformatics for exploration, extraction, exploitation, and production from any living organisms and any source of biomass by means of biochemical engineering where high value-added products could be planned, forecasted, formulated, developed, manufactured, and marketed for the purpose of sustainable operations and gaining durable patents rights. The utilization of biological processes, organisms or systems to produce products that are anticipated to improve human lives is termed biotechnology.
By contrast, bioengineering is generally thought of as a related field that more heavily emphasizes higher systems approaches for interfacing with and utilizing living things. Bioengineering is the application of the principles of engineering and natural sciences to tissues, cells, and molecules. This can be considered as the use of knowledge from working with and manipulating biology to achieve a result that can improve functions in plants and animals. Relatedly, biomedical engineering is an overlapping field that often draws upon and applies biotechnology, especially in certain sub-fields of biomedical or chemical engineering such as tissue engineering, biopharmaceutical engineering, and genetic engineering.
History
Many forms of human-derived agriculture fit the broad definition of "utilizing a biotechnological system to make products". The cultivation of plants may be viewed as the earliest biotechnological enterprise.Agriculture has been theorized to have become the dominant way of producing food since the Neolithic Revolution. Through early biotechnology, the earliest farmers selected and bred the best-suited crops to produce enough food to support a growing population. As crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by-products could effectively fertilize, restore nitrogen, and control pests. Throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants — one of the first forms of biotechnology.
These processes were also included in the early fermentation of beer. These processes were introduced in early Mesopotamia, Egypt, China and India, and still use the same basic biological methods. In brewing, malted grains convert starch from grains into sugar and then adding specific yeasts to produce beer. In this process, carbohydrates in the grains broke down into alcohols, such as ethanol. Later, other cultures developed the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Louis Pasteur's work in 1857, it is still the first use of biotechnology to convert a food source into another form.
Before the time of Charles Darwin's work and life, animal and plant scientists had already used selective breeding. Darwin added to that body of work with his scientific observations about the ability of science to change species. These accounts contributed to Darwin's theory of natural selection.
For thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. In selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. For example, this technique was used with corn to produce the largest and sweetest crops.
In the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. In 1917, Chaim Weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using Clostridium acetobutylicum, to produce acetone, which the United Kingdom desperately needed to manufacture explosives during World War I.
Biotechnology has also led to the development of antibiotics. In 1928, Alexander Fleming discovered the mold Penicillium. His work led to the purification of the antibiotic formed by the mold by Howard Florey, Ernst Boris Chain and Norman Heatley – to form what we today know as penicillin. In 1940, penicillin became available for medicinal use to treat bacterial infections in humans.
The field of modern biotechnology is generally thought of as having been born in 1971 when Paul Berg's experiments in gene splicing had early success. Herbert W. Boyer and Stanley N. Cohen significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. The commercial viability of a biotechnology industry was significantly expanded on June 16, 1980, when the United States Supreme Court ruled that a genetically modified microorganism could be patented in the case of Diamond v. Chakrabarty. Indian-born Ananda Chakrabarty, working for General Electric, had modified a bacterium capable of breaking down crude oil, which he proposed to use in treating oil spills..
The MOSFET was invented at Bell Labs between 1955 and 1960, Two years later, Leland C. Clark and Champ Lyons invented the first biosensor in 1962. Biosensor MOSFETs were later developed, and they have since been widely used to measure physical, chemical, biological and environmental parameters. The first BioFET was the ion-sensitive field-effect transistor, invented by Piet Bergveld in 1970. It is a special type of MOSFET, where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode. The ISFET is widely used in biomedical applications, such as the detection of DNA hybridization, biomarker detection from blood, antibody detection, glucose measurement, pH sensing, and genetic technology.
By the mid-1980s, other BioFETs had been developed, including the gas sensor FET, pressure sensor FET, chemical field-effect transistor, reference ISFET, enzyme-modified FET and immunologically modified FET. By the early 2000s, BioFETs such as the DNA field-effect transistor, gene-modified FET and cell-potential BioFET had been developed.
A factor influencing the biotechnology sector's success is improved intellectual property rights legislation—and enforcement—worldwide, as well as strengthened demand for medical and pharmaceutical products.
Rising demand for biofuels is expected to be good news for the biotechnology sector, with the Department of Energy estimating ethanol usage could reduce U.S. petroleum-derived fuel consumption by up to 30% by 2030. The biotechnology sector has allowed the U.S. farming industry to rapidly increase its supply of corn and soybeans—the main inputs into biofuels—by developing genetically modified seeds that resist pests and drought. By increasing farm productivity, biotechnology boosts biofuel production.