Carbon cycle


The carbon cycle is a part of the biogeochemical cycle where carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycle. Carbon is the main component of biological compounds as well as a major component of many rocks such as limestone. The carbon cycle comprises a sequence of events that are key to making Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration to and release from carbon sinks. At 422.7 parts per million, the global average atmospheric carbon dioxide has set a new record high in 2024.
To describe the dynamics of the carbon cycle, a distinction can be made between the fast and slow carbon cycle. The fast cycle is also referred to as the biological carbon cycle. Fast cycles can complete within years, moving substances from atmosphere to biosphere, then back to the atmosphere. Slow or geological cycles can take millions of years to complete, moving substances through the Earth's crust between rocks, soil, ocean and atmosphere.
Humans have disturbed the carbon cycle for many centuries. They have done so by modifying land use and by mining and burning carbon from ancient organic remains. Carbon dioxide in the atmosphere has increased nearly 52% over pre-industrial levels by 2020, resulting in global warming. The increased carbon dioxide has also caused a reduction in the ocean's pH value and is fundamentally altering marine chemistry. Carbon dioxide is critical for photosynthesis.

Main compartments

The carbon cycle was first described by Antoine Lavoisier and Joseph Priestley, and popularised by Humphry Davy. The global carbon cycle is now usually divided into the following major reservoirs of carbon interconnected by pathways of exchange:
The carbon exchanges between reservoirs occur as the result of various chemical, physical, geological, and biological processes. The ocean contains the largest active pool of carbon near the surface of the Earth.
The natural flows of carbon between the atmosphere, ocean, terrestrial ecosystems, and sediments are fairly balanced; so carbon levels would be roughly stable without human influence.

Atmosphere

Carbon in the Earth's atmosphere exists in two main forms: carbon dioxide and methane. Both of these gases absorb and retain heat in the atmosphere and are partially responsible for the greenhouse effect. Methane produces a larger greenhouse effect per volume as compared to carbon dioxide, but it exists in much lower concentrations and is more short-lived than carbon dioxide. Thus, carbon dioxide contributes more to the global greenhouse effect than methane.
Carbon dioxide is removed from the atmosphere primarily through photosynthesis and enters the terrestrial and oceanic biospheres. Carbon dioxide also dissolves directly from the atmosphere into bodies of water, as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid, which contributes to ocean acidity. It can then be absorbed by rocks through weathering. It also can acidify other surfaces it touches or be washed into the ocean.
Human activities over the past two centuries have increased the amount of carbon in the atmosphere by nearly 50% as of year 2020, mainly in the form of carbon dioxide, both by modifying ecosystems' ability to extract carbon dioxide from the atmosphere and by emitting it directly, e.g., by burning fossil fuels and manufacturing concrete.
In the far future, the rate at which carbon dioxide is absorbed into the soil via the carbonate–silicate cycle will likely increase due to expected changes in the sun as it ages. The expected increased luminosity of the Sun will likely speed up the rate of surface weathering. This will eventually cause most of the carbon dioxide in the atmosphere to be squelched into the Earth's crust as carbonate. Once the concentration of carbon dioxide in the atmosphere falls below approximately 50 parts per million, C3 photosynthesis will no longer be possible. This has been predicted to occur 600 million years from the present, though models vary.
Once the oceans on the Earth evaporate in about 1.1 billion years from now, plate tectonics will very likely stop due to the lack of water to lubricate them. The lack of volcanoes pumping out carbon dioxide will cause the carbon cycle to end between 1 billion and 2 billion years into the future.

Terrestrial biosphere

The terrestrial biosphere includes the organic carbon in all land-living organisms, both alive and dead, as well as carbon stored in soils. About 500 gigatons of carbon are stored above ground in plants and other living organisms, while soil holds approximately 1,500 gigatons of carbon. Most carbon in the terrestrial biosphere is organic carbon, while about a third of soil carbon is stored in inorganic forms, such as calcium carbonate. Organic carbon is a major component of all organisms living on Earth. Autotrophs extract it from the air in the form of carbon dioxide, converting it to organic carbon, while heterotrophs receive carbon by consuming other organisms.
Because carbon uptake in the terrestrial biosphere is dependent on biotic factors, it follows a diurnal and seasonal cycle. In CO2 measurements, this feature is apparent in the Keeling curve. It is strongest in the northern hemisphere because this hemisphere has more land mass than the southern hemisphere and thus more room for ecosystems to absorb and emit carbon.
Carbon leaves the terrestrial biosphere in several ways and on different time scales. The combustion or respiration of organic carbon releases it rapidly into the atmosphere. It can also be exported into the ocean through rivers or remain sequestered in soils in the form of inert carbon. Carbon stored in soil can remain there for up to thousands of years before being washed into rivers by erosion or released into the atmosphere through soil respiration. Between 1989 and 2008 soil respiration increased by about 0.1% per year. In 2008, the global total of CO2 released by soil respiration was roughly 98 billion tonnes, about 3 times more carbon than humans are now putting into the atmosphere each year by burning fossil fuel. There are a few plausible explanations for this trend, but the most likely explanation is that increasing temperatures have increased rates of decomposition of soil organic matter, which has increased the flow of CO2. The length of carbon sequestering in soil is dependent on local climatic conditions and thus changes in the course of climate change.
PoolQuantity
Atmosphere720
Ocean 38,400
Total inorganic37,400
Total organic1,000
Surface layer670
Deep layer36,730
Lithosphere
Sedimentary carbonates> 60,000,000
Kerogens15,000,000
Terrestrial biosphere 2,000
Living biomass600 – 1,000
Dead biomass1,200
Aquatic biosphere1 – 2
Fossil fuels 4,130
Coal3,510
Oil230
Gas140
Other 250

Ocean

The ocean can be conceptually divided into a surface layer within which water makes frequent contact with the atmosphere, and a deep layer below the typical mixed layer depth of a few hundred meters or less, within which the time between consecutive contacts may be centuries. The dissolved inorganic carbon in the surface layer is exchanged rapidly with the atmosphere, maintaining equilibrium. Partly because its concentration of DIC is about 15% higher but mainly due to its larger volume, the deep ocean contains far more carbon—it is the largest pool of actively cycled carbon in the world, containing 50 times more than the atmosphere—but the timescale to reach equilibrium with the atmosphere is hundreds of years: the exchange of carbon between the two layers, driven by thermohaline circulation, is slow.
Carbon enters the ocean mainly through the dissolution of atmospheric carbon dioxide, a small fraction of which is converted into carbonate. It can also enter the ocean through rivers as dissolved organic carbon. It is converted by organisms into organic carbon through photosynthesis and can either be exchanged throughout the food chain or precipitated into the oceans' deeper, more carbon-rich layers as dead soft tissue or in shells as calcium carbonate. It circulates in this layer for long periods of time before either being deposited as sediment or, eventually, returned to the surface waters through thermohaline circulation.
Oceans are basic. The increase in atmospheric CO2 shifts the pH of the ocean towards neutral in a process called ocean acidification. Oceanic absorption of CO2 is one of the most important forms of carbon sequestering. The projected rate of pH reduction could slow the biological precipitation of calcium carbonates, thus decreasing the ocean's capacity to absorb CO2.

Geosphere

The geologic component of the carbon cycle operates slowly in comparison to the other parts of the global carbon cycle. It is one of the most important determinants of the amount of carbon in the atmosphere, and thus of global temperatures.
Most of the Earth's carbon is stored inertly in the Earth's lithosphere. Much of the carbon stored in the Earth's mantle was stored there when the Earth formed. Some of it was deposited in the form of organic carbon from the biosphere. Of the carbon stored in the geosphere, about 80% is limestone and its derivatives, which form from the sedimentation of calcium carbonate stored in the shells of marine organisms. The remaining 20% is stored as kerogens formed through the sedimentation and burial of terrestrial organisms under high heat and pressure. Organic carbon stored in the geosphere can remain there for millions of years.
Carbon can leave the geosphere in several ways. Carbon dioxide is released during the metamorphism of carbonate rocks when they are subducted into the Earth's mantle. This carbon dioxide can be released into the atmosphere and ocean through volcanoes and hotspots. It can also be removed by humans through the direct extraction of kerogens in the form of fossil fuels. After extraction, fossil fuels are burned to release energy and emit the carbon they store into the atmosphere.