Magma
Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles.
Magma is produced by melting of the mantle or the crust in various tectonic settings, which on Earth include subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During magma's storage in the crust, its composition may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following its ascent through the crust, magma may feed a volcano and be extruded as lava, or it may solidify underground to form an intrusion, such as a dike, a sill, a laccolith, a pluton, or a batholith.
While the study of magma has relied on observing magma after its transition into a lava flow, magma has been encountered in situ three times during geothermal drilling projects, twice in Iceland and once in Hawaii.
Physical and chemical properties
Magma consists of liquid rock that usually contains suspended solid crystals. As magma approaches the surface and the overburden pressure drops, dissolved gases bubble out of the liquid, so that magma near the surface consists of materials in solid, liquid, and gas phases.Composition
Most magma is rich in silica. Rare nonsilicate magma can form by local melting of nonsilicate mineral deposits or by separation of a magma into separate immiscible silicate and nonsilicate liquid phases.Silicate magmas are molten mixtures dominated by oxygen and silicon, the most abundant chemical elements in the Earth's crust, with smaller quantities of aluminium, calcium, magnesium, iron, sodium, and potassium, and minor amounts of many other elements. Petrologists routinely express the composition of a silicate magma in terms of the weight or molar mass fraction of the oxides of the major elements present in the magma.
Because many of the properties of a magma are observed to correlate with silica content, silicate magmas are divided into four chemical types based on silica content: felsic, intermediate, mafic, and ultramafic.
Felsic magmas
Felsic or silicic magmas have a silica content greater than 63%. They include rhyolite and dacite magmas. With such a high silica content, these magmas are extremely viscous, ranging from 108 cP for hot rhyolite magma at to 1011 cP for cool rhyolite magma at. For comparison, water has a viscosity of about 1 cP. Because of this very high viscosity, felsic lavas usually erupt explosively to produce pyroclastic deposits. However, rhyolite lavas occasionally erupt effusively to form lava spines, lava domes or "coulees". The lavas typically fragment as they extrude, producing block lava flows. These often contain obsidian.Felsic lavas can erupt at temperatures as low as. Unusually hot rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in the Snake River Plain of the northwestern United States.
Intermediate magmas
Intermediate or andesitic magmas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in magnesium and iron than felsic magmas. Intermediate lavas form andesite domes and block lavas, and may occur on steep composite volcanoes, such as in the Andes. They are also commonly hotter, in the range of ). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with a typical viscosity of 3.5 million cP at. This is slightly greater than the viscosity of smooth peanut butter. Intermediate magmas show a greater tendency to form phenocrysts. Higher iron and magnesium tends to manifest as a darker groundmass, including amphibole or pyroxene phenocrysts.Mafic magmas
Mafic or basaltic magmas have a silica content of 52% to 45%. They are typified by their high ferromagnesian content, and generally erupt at temperatures of. Viscosities can be relatively low, around 104 to 105 cP, although this is still many orders of magnitude higher than water. This viscosity is similar to that of ketchup. Basalt lavas tend to produce low-profile shield volcanoes or flood basalts, because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath a solidified crust. Most basalt lavas are of ʻAʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas, which are rather similar to entrail-type pahoehoe lavas on land.Ultramafic magmas
Ultramafic magmas, such as picritic basalt, komatiite, and highly magnesian magmas that form boninite, take the composition and temperatures to the extreme. All have a silica content under 45%. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of. At this temperature there is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP, similar to that of light motor oil. Most ultramafic lavas are no younger than the Proterozoic, with a few ultramafic magmas known from the Phanerozoic in Central America that are attributed to a hot mantle plume. No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas.Alkaline magmas
Some silicic magmas have an elevated content of alkali metal oxides, particularly in regions of continental rifting, areas overlying deeply subducted plates, or at intraplate hotspots. Their silica content can range from ultramafic to felsic. They are more likely to be generated at greater depths in the mantle than subalkaline magmas. Olivine nephelinite magmas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other magmas.Non-silicate magmasSome lavas of unusual composition have erupted onto the surface of the Earth. These include:
The solubility of magmatic gases in magma depends on pressure, magma composition, and temperature. Magma that is extruded as lava is extremely dry, but magma at depth and under great pressure can contain a dissolved water content in excess of 10%. Water is somewhat less soluble in low-silica magma than high-silica magma, so that at 1,100 °C and 0.5 GPa, a basaltic magma can dissolve 8% while a granite pegmatite magma can dissolve 11%. However, magmas are not necessarily saturated under typical conditions.
|