Serpens


Serpens is a constellation in the northern celestial hemisphere. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations designated by the International Astronomical Union. It is unique among the modern constellations in being split into two non-contiguous parts, Serpens Caput to the west and Serpens Cauda to the east. Between these two halves lies the constellation of Ophiuchus, the "Serpent-Bearer". In figurative representations, the body of the serpent is represented as passing behind Ophiuchus between Mu Serpentis in Serpens Caput and Nu Serpentis in Serpens Cauda.
The brightest star in Serpens is the red giant star Alpha Serpentis, or Unukalhai, in Serpens Caput, with an apparent magnitude of 2.63. Also located in Serpens Caput are the naked-eye globular cluster Messier 5 and the naked-eye variables R Serpentis and Tau4 Serpentis. Notable extragalactic objects include Seyfert's Sextet, one of the densest galaxy clusters known; Arp 220, the prototypical ultraluminous infrared galaxy; and Hoag's Object, the most famous of the very rare class of galaxies known as ring galaxies.
Part of the Milky Way's galactic plane passes through Serpens Cauda, which is therefore rich in galactic deep-sky objects, such as the Eagle Nebula and its associated star cluster Messier 16. The nebula measures 70 light-years by 50 light-years and contains the Pillars of Creation, three dust clouds that became famous for the image taken by the Hubble Space Telescope. Other striking objects include the Red Square Nebula, one of the few objects in astronomy to take on a square shape; and Westerhout 40, a massive nearby star-forming region consisting of a molecular cloud and an H II region.

History

In Greek mythology, Serpens represents a snake held by the healer Asclepius. Represented in the sky by the constellation Ophiuchus, Asclepius once killed a snake, but the animal was subsequently resurrected after a second snake placed a revival herb on it before its death. As snakes shed their skin every year, they were known as the symbol of rebirth in ancient Greek society, and legend says Asclepius would revive dead humans using the same technique he witnessed. Although this is likely the logic for Serpens' presence with Ophiuchus, the true reason is still not fully known. Sometimes, Serpens was depicted as coiling around Ophiuchus, but the majority of atlases showed Serpens passing either behind Ophiuchus' body or between his legs.
In some ancient atlases, the constellations Serpens and Ophiuchus were depicted as two separate constellations, although more often they were shown as a single constellation. One notable figure to depict Serpens separately was Johann Bayer; thus, Serpens' stars are cataloged with separate Bayer designations from those of Ophiuchus. When Eugène Delporte established modern constellation boundaries in the 1920s, he elected to depict the two separately. However, this posed the problem of how to disentangle the two constellations, with Deporte deciding to split Serpens into two areas—the head and the tail—separated by the continuous Ophiuchus. These two areas became known as Serpens Caput and Serpens Cauda, caput being the Latin word for head and cauda the Latin word for tail.
In Chinese astronomy, most of the stars of Serpens represented part of a wall surrounding a marketplace, known as Tianshi, which was in Ophiuchus and part of Hercules. Serpens also contains a few Chinese constellations. Two stars in the tail represented part of Shilou, the tower with the market office. Another star in the tail represented Liesi, jewel shops. One star in the head marked Tianru, the crown prince's wet nurse, or sometimes rain.
There were two "serpent" constellations in Babylonian astronomy, known as Mušḫuššu and Bašmu. It appears that Mušḫuššu was depicted as a hybrid of a dragon, a lion and a bird, and loosely corresponded to Hydra. Bašmu was a horned serpent and roughly corresponds to the Ὄφις constellation of Eudoxus of Cnidus on which the Ὄφις of Ptolemy is based.

Characteristics

Serpens is the only one of the 88 modern constellations to be split into two disconnected regions in the sky: Serpens Caput and Serpens Cauda. The constellation is also unusual in that it depends on another constellation for context; specifically, it is being held by the Serpent Bearer Ophiuchus.
Serpens Caput is bordered by Libra to the south, Virgo and Boötes to the west, Corona Borealis to the north, and Ophiuchus and Hercules to the east; Serpens Cauda is bordered by Sagittarius to the south, Scutum and Aquila to the east, and Ophiuchus to the north and west. Covering 636.9 square degrees total, it ranks 23rd of the 88 constellations in size. It appears prominently in both the northern and southern skies during the Northern Hemisphere's summer. Its main asterism consists of 11 stars, and 108 stars in total are brighter than magnitude 6.5, the traditional limit for naked-eye visibility.
Serpens Caput's boundaries, as set by Belgian astronomer Eugène Delporte in 1930, are defined by a 10-sided polygon, while Serpens Cauda's are defined by a 22-sided polygon. In the equatorial coordinate system, the right ascension coordinates of Serpens Caput's borders lie between and, while the declination coordinates are between and. Serpens Cauda's boundaries lie between right ascensions of and and declinations of and. The International Astronomical Union adopted the three-letter abbreviation "Ser" for the constellation in 1922.

Features

Stars

Head stars

Marking the heart of the serpent is the constellation's brightest star, Alpha Serpentis. Traditionally called Unukalhai, is a red giant of spectral type K2III located approximately 23 parsecs distant with a visual magnitude of 2.630 ± 0.009, meaning it can easily be seen with the naked eye even in areas with substantial light pollution. A faint companion is in orbit around the red giant star, although it is not visible to the naked eye. Situated near Alpha is Lambda Serpentis, a magnitude 4.42 ± 0.05 star rather similar to the Sun positioned only 12 parsecs away. It has an exoplanet orbiting around it. Another solar analog in Serpens is the primary of Psi Serpentis, a binary star located slightly further away at approximately 14 parsecs.
Beta, Gamma, and Iota Serpentis form a distinctive triangular shape marking the head of the snake, with Kappa Serpentis being roughly midway between Gamma and Iota. The brightest of the four with an apparent magnitude of roughly 3.67, Beta Serpentis is a white main-sequence star roughly 160 parsecs distant. It is likely that a nearby 10th-magnitude star is physically associated with Beta, although it is not certain. The Mira variable R Serpentis, situated between Beta and Gamma, is visible to the naked eye at its maximum of 5th-magnitude, but, typical of Mira variables, it can fade to below magnitude 14. Gamma Serpentis itself is an F-type subgiant located only 11 parsecs distant and thus is quite bright, being of magnitude 3.84 ± 0.05. The star is known to show solar-like oscillations. Iota Serpentis is a binary star system.
Delta Serpentis, forming part of the body of the snake between the heart and the head, is a multiple star system positioned around 70 parsecs from Earth. Consisting of four stars, the system has a total apparent magnitude of 3.79 as viewed from Earth, although two of the stars, with a combined apparent magnitude of 3.80, provide nearly all the light. The primary, a white subgiant, is a Delta Scuti variable with an average apparent magnitude of 4.23. Positioned very near Delta, both in the night sky and likely in actual space at an estimated distance of around 70 parsecs, is the barium star 16 Serpentis. Another notable variable star visible to the naked eye is Chi Serpentis, an Alpha² Canum Venaticorum variable situated midway between Delta and Beta which varies from its median brightness of 5.33 by 0.03 magnitudes over a period of approximately 1.5 days. Chi Serpentis is a chemically peculiar star.
The two stars in Serpens Caput that form part of the Snake's body below the heart are Epsilon and Mu Serpentis, both third-magnitude A-type main-sequence stars. Both have a peculiarity: Epsilon is an Am star, while Mu is a binary. Located slightly northwest of Mu is 36 Serpentis, another A-type main-sequence star. This star also has a peculiarity; it is a binary with the primary component being a Lambda Boötis star, meaning that it has solar-like amounts of carbon, nitrogen, and oxygen, while containing very low amounts of iron peak elements. The secondary star has also been a source of X-ray emissions. 25 Serpentis, positioned a few degrees northeast of Mu Serpentis, is a spectroscopic binary consisting of a hot B-type giant and an A-type main-sequence star. The primary is a slowly pulsating B star, which causes the system to vary by 0.03 magnitudes.
Serpens Caput contains many RR Lyrae variables, although most are too faint to be seen without professional photography. The brightest is VY Serpentis, only of 10th magnitude. This star's period has been increasing by approximately 1.2 seconds per century. A variable star of a different kind is Tau4 Serpentis, a cool red giant that pulsates between magnitudes 5.89 and 7.07 in 87 days. This star has been found to display an inverse P Cygni profile, where cold infalling gas on to the star creates redshifted hydrogen absorption lines next to the normal emission lines.
Several stars in Serpens have been found to have planets. The brightest, Omega Serpentis, located between Epsilon and Mu, is an orange giant with a planet of at least 1.7 Jupiter-masses. NN Serpentis, an eclipsing post-common-envelope binary consisting of a white dwarf and a red dwarf, is very likely to have two planets causing variations in the period of the eclipses. Although it does not have a planet, the solar analog HD 137510 has been found to have a brown dwarf companion within the brown-dwarf desert.
PSR B1534+11 is a system consisting of two neutron stars orbiting each other, one of which is a pulsar with a period of 37.9 milliseconds. Situated approximately 1000 parsecs distant, the system was used to test Albert Einstein's theory of general relativity, validating the system's relativistic parameters to within 0.2% of values predicted by the theory. The X-ray emission from the system has been found to be present when the non-pulsar star intersects the equatorial pulsar wind of the pulsar, and the system's orbit has been found to vary slightly.