Star formation
Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium and giant molecular clouds as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.
First stars
Star formation is divided into three groups called "Populations". Population III stars formed from primordial hydrogen after the Big Bang. These stars are poorly understood but should contain only hydrogen and helium. Population II stars formed from the debris of the first stars and they in turn created more higher atomic number chemical elements. Population I stars are young metal-rich stars like the Sun.The initial star formation was driven by gravitational attraction of hydrogen within local areas of higher gravity called dark matter halos. As the hydrogen lost energy through atomic or molecular energy transitions, the temperature of local clumps fell allowing more gravitational condensation. Eventually the process leads to collapse into a star. Details of the dynamics of the Population III stars is now believed to be as complex as star formation today.
Stellar nurseries
Interstellar clouds
like the Milky Way contain stars, stellar remnants, and a diffuse interstellar medium of gas and dust. The interstellar medium consists of 104 to 106 particles per cm3, and is typically composed of roughly 70% hydrogen, 28% helium, and 1.5% heavier elements by mass. The trace amounts of heavier elements were and are produced within stars via stellar nucleosynthesis and ejected as the stars pass beyond the end of their main sequence lifetime. Higher density regions of the interstellar medium form clouds, or diffuse nebulae, where star formation takes place. In contrast to spiral galaxies, elliptical galaxies lose the cold component of its interstellar medium within roughly a billion years, which hinders the galaxy from forming diffuse nebulae except through mergers with other galaxies.Image:Eagle nebula pillars.jpg|thumb|left|Hubble Space Telescope image known as Pillars of Creation, where stars are forming in the Eagle Nebula
In the dense nebulae where stars are produced, much of the hydrogen is in the molecular form, so these nebulae are called molecular clouds. The Herschel Space Observatory has revealed that filaments, or elongated dense gas structures, are truly ubiquitous in molecular clouds and central to the star formation process. They fragment into gravitationally bound cores, most of which will evolve into stars. Continuous accretion of gas, geometrical bending, and magnetic fields may control the detailed manner in which the filaments are fragmented. Observations of supercritical filaments have revealed quasi-periodic chains of dense cores with spacing comparable to the filament inner width, and embedded protostars with outflows.
Observations indicate that the coldest clouds tend to form low-mass stars, which are first observed via the infrared light they emit inside the clouds, and then as visible light when the clouds dissipate. Giant molecular clouds, which are generally warmer, produce stars of all masses. These giant molecular clouds have typical densities of 100 particles per cm3, diameters of, masses of up to 6 million solar masses, or six million times the mass of the Sun. The average interior temperature is.
About half the total mass of the Milky Way's galactic ISM is found in molecular clouds and the galaxy includes an estimated 6,000 molecular clouds, each with more than. The nebula nearest to the Sun where massive stars are being formed is the Orion Nebula, away. However, lower mass star formation is occurring about 400–450 light-years distant in the ρ Ophiuchi cloud complex.
A more compact site of star formation is the opaque clouds of dense gas and dust known as Bok globules, so named after the astronomer Bart Bok. These can form in association with collapsing molecular clouds or possibly independently. The Bok globules are typically up to a light-year across and contain a few solar masses. They can be observed as dark clouds silhouetted against bright emission nebulae or background stars. Over half the known Bok globules have been found to contain newly forming stars.
Cloud collapse
An interstellar cloud of gas will remain in hydrostatic equilibrium as long as the kinetic energy of the gas pressure is in balance with the potential energy of the internal gravitational force. Mathematically this is expressed using the virial theorem, which states that, to maintain equilibrium, the gravitational potential energy must equal twice the internal thermal energy. If a cloud is massive enough that the gas pressure is insufficient to support it, the cloud will undergo gravitational collapse. The mass above which a cloud will undergo such collapse is called the Jeans mass. The Jeans mass depends on the temperature and density of the cloud, but is typically thousands to tens of thousands of solar masses. During cloud collapse dozens to tens of thousands of stars form more or less simultaneously which is observable in so-called embedded clusters. The end product of a core collapse is an open cluster of stars.In triggered star formation, one of several events might occur to compress a molecular cloud and initiate its gravitational collapse. Molecular clouds may collide with each other, or a nearby supernova explosion can be a trigger, sending shocked matter into the cloud at very high speeds. Alternatively, galactic collisions can trigger massive starbursts of star formation as the gas clouds in each galaxy are compressed and agitated by tidal forces. The latter mechanism may be responsible for the formation of globular clusters.
A supermassive black hole at the core of a galaxy may serve to regulate the rate of star formation in a galactic nucleus. A black hole that is accreting infalling matter can become active, emitting a strong wind through a collimated relativistic jet. This can limit further star formation. Massive black holes ejecting radio-frequency-emitting particles at near-light speed can also block the formation of new stars in aging galaxies. However, the radio emissions around the jets may also trigger star formation. Likewise, a weaker jet may trigger star formation when it collides with a cloud.
As it collapses, a molecular cloud breaks into smaller and smaller pieces in a hierarchical manner, until the fragments reach stellar mass. In each of these fragments, the collapsing gas radiates away the energy gained by the release of gravitational potential energy. As the density increases, the fragments become opaque and are thus less efficient at radiating away their energy. This raises the temperature of the cloud and inhibits further fragmentation. The fragments now condense into rotating spheres of gas that serve as stellar embryos.
Complicating this picture of a collapsing cloud are the effects of turbulence, macroscopic flows, rotation, magnetic fields and the cloud geometry. Both rotation and magnetic fields can hinder the collapse of a cloud. Turbulence is instrumental in causing fragmentation of the cloud, and on the smallest scales it promotes collapse.
Protostar
A protostellar cloud will continue to collapse as long as the gravitational binding energy can be eliminated. This excess energy is primarily lost through radiation. However, the collapsing cloud will eventually become opaque to its own radiation, and the energy must be removed through some other means. The dust within the cloud becomes heated to temperatures of, and these particles radiate at wavelengths in the far infrared where the cloud is transparent. Thus the dust mediates the further collapse of the cloud.During the collapse, the density of the cloud increases towards the center and thus the middle region becomes optically opaque first. This occurs when the density is about. A core region, called the first hydrostatic core, forms where the collapse is essentially halted. It continues to increase in temperature as determined by the virial theorem. The gas falling toward this opaque region collides with it and creates shock waves that further heat the core.
Image:Cepheus B.jpg|thumb|left|Composite image showing young stars in and around molecular cloud Cepheus B
When the core temperature reaches about, the thermal energy dissociates the H2 molecules. This is followed by the ionization of the hydrogen and helium atoms. These processes absorb the energy of the contraction, allowing it to continue on timescales comparable to the period of collapse at free fall velocities. After the density of infalling material has reached about 10−8 g / cm3, that material is sufficiently transparent to allow energy radiated by the protostar to escape. The combination of convection within the protostar and radiation from its exterior allow the star to contract further. This continues until the gas is hot enough for the internal pressure to support the protostar against further gravitational collapse—a state called hydrostatic equilibrium. When this accretion phase is nearly complete, the resulting object is known as a protostar.
Image:N11.jpg|thumb|right| N11, part of a complex network of gas clouds and star clusters within our neighbouring galaxy, the Large Magellanic Cloud
Accretion of material onto the protostar continues partially from the newly formed circumstellar disc. When the density and temperature are high enough, deuterium fusion begins, and the outward pressure of the resultant radiation slows the collapse. Material comprising the cloud continues to "rain" onto the protostar. In this stage bipolar jets are produced called Herbig–Haro objects. This is probably the means by which excess angular momentum of the infalling material is expelled, allowing the star to continue to form.
When the surrounding gas and dust envelope disperses and accretion process stops, the star is considered a pre-main-sequence star. The energy source of these objects is Kelvin–Helmholtz mechanism, as opposed to hydrogen burning in main sequence stars. The PMS star follows a Hayashi track on the Hertzsprung–Russell diagram. The contraction will proceed until the Hayashi limit is reached, and thereafter contraction will continue on a Kelvin–Helmholtz timescale with the temperature remaining stable. Stars with less than thereafter join the main sequence. For more massive PMS stars, at the end of the Hayashi track they will slowly collapse in near hydrostatic equilibrium, following the Henyey track.
Finally, hydrogen begins to fuse in the core of the star, and the rest of the enveloping material is cleared away. This ends the protostellar phase and begins the star's main sequence phase on the H–R diagram.
The stages of the process are well defined in stars with masses around or less. In high mass stars, the length of the star formation process is comparable to the other timescales of their evolution, much shorter, and the process is not so well defined. The later evolution of stars is studied in stellar evolution.
| Protostar |
Protostar outburst – HOPS 383 |