Michael Faraday


Michael Faraday was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic induction, diamagnetism, and electrolysis. Although Faraday received little formal education, as a self-made man, he was one of the most influential scientists in history. It was by his research on the magnetic field around a conductor carrying a direct current that Faraday established the concept of the electromagnetic field in physics. Faraday also established that magnetism could affect rays of light and that there was an underlying relationship between the two phenomena. He similarly discovered the principles of electromagnetic induction, diamagnetism, and the laws of electrolysis. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts that electricity became practical for use in technology. The SI unit of capacitance, the farad, is named after him.
As a chemist, Faraday discovered benzene and carbon tetrachloride, investigated the clathrate hydrate of chlorine, invented an early form of the Bunsen burner and the system of oxidation numbers, and popularised terminology such as "anode", "cathode", "electrode" and "ion". Faraday ultimately became the first and foremost Fullerian Professor of Chemistry at the Royal Institution, a lifetime position.
Faraday was an experimentalist who conveyed his ideas in clear and simple language. His mathematical abilities did not extend as far as trigonometry and were limited to the simplest algebra. Physicist and mathematician James Clerk Maxwell took the work of Faraday and others and summarised it in a set of equations which is accepted as the basis of all modern theories of electromagnetic phenomena. On Faraday's uses of lines of force, Maxwell wrote that they show Faraday "to have been in reality a mathematician of a very high order – one from whom the mathematicians of the future may derive valuable and fertile methods."
A highly principled scientist, Faraday devoted considerable time and energy to public service. He worked on optimising lighthouses and protecting ships from corrosion. With Charles Lyell, he produced a forensic investigation on a colliery explosion at Haswell, County Durham, indicating for the first time that coal dust contributed to the severity of the explosion, and demonstrating how ventilation could have prevented it. Faraday also investigated industrial pollution at Swansea, air pollution at the Royal Mint, and wrote to The Times on the foul condition of the River Thames during the Great Stink. He refused to work on developing chemical weapons for use in the Crimean War, citing ethical reservations. He declined to have his lectures published, preferring people to recreate the experiments for themselves, to better experience the discovery, and told a publisher: "I have always loved science more than money & because my occupation is almost entirely personal I cannot afford to get rich."
Albert Einstein kept a portrait of Faraday on his study wall, alongside those of Isaac Newton and James Clerk Maxwell. Physicist Ernest Rutherford stated, "When we consider the magnitude and extent of his discoveries and their influence on the progress of science and of industry, there is no honour too great to pay to the memory of Faraday, one of the greatest scientific discoverers of all time."

Biography

Early life

Michael Faraday was born on September 21, 1791 in Newington Butts, Surrey, which is now part of the London Borough of Southwark. His family was not well off. His father, James, was a member of the Glasite sect of Christianity. James Faraday moved his wife, Margaret, and two children to London during the winter of 1790 from Outhgill in Westmorland, where he had been an apprentice to the village blacksmith. Michael was born in the autumn of the following year, the third of four children. The young Michael Faraday, having only the most basic school education, had to educate himself.
At the age of 14, he became an apprentice to George Riebau, a local bookbinder and bookseller in Blandford Street. During his seven-year apprenticeship Faraday read many books, including Isaac Watts's The Improvement of the Mind, and he enthusiastically implemented the principles and suggestions contained therein. During this period, Faraday held discussions with his peers in the City Philosophical Society, where he attended lectures about various scientific topics. He also developed an interest in science, especially in electricity. Faraday was particularly inspired by the book Conversations on Chemistry by Jane Marcet.

Adult life

In 1812, at the age of 20 and at the end of his apprenticeship, Faraday attended lectures by the eminent English chemist Humphry Davy of the Royal Institution and the Royal Society, and John Tatum, founder of the City Philosophical Society. Many of the tickets for these lectures were given to Faraday by William Dance, who was one of the founders of the Royal Philharmonic Society. Faraday subsequently sent Davy a 300-page book based on notes that he had taken during these lectures. Davy's reply was immediate, kind, and favourable. In 1813, when Davy damaged his eyesight in an accident with nitrogen trichloride, he decided to employ Faraday as an assistant. Coincidentally one of the Royal Institution's assistants, John Payne, was sacked and Sir Humphry Davy had been asked to find a replacement; thus he appointed Faraday as Chemical Assistant at the Royal Institution on 1 March 1813. Very soon, Davy entrusted Faraday with the preparation of nitrogen trichloride samples, and they both were injured in an explosion of this very sensitive substance.
Faraday married Sarah Barnard on 12 June 1821. They met through their families at the Sandemanian church, and he confessed his faith to the Sandemanian congregation the month after they were married. They had no children. Faraday was a devout Christian; his Sandemanian denomination was an offshoot of the Church of Scotland. Well after his marriage, he served as deacon and for two terms as an elder in the meeting house of his youth. His church was located at Paul's Alley in the Barbican. This meeting house relocated in 1862 to Barnsbury Grove, Islington; this North London location was where Faraday served the final two years of his second term as elder prior to his resignation from that post. Biographers have noted that "a strong sense of the unity of God and nature pervaded Faraday's life and work."

Later life

In June 1832, the University of Oxford granted Faraday an honorary Doctor of Civil Law degree. During his lifetime, he was offered a knighthood in recognition for his services to science, which he turned down on religious grounds, believing that it was against the word of the Bible to accumulate riches and pursue worldly reward, and stating that he preferred to remain "plain Mr Faraday to the end". Elected a Fellow of the Royal Society in 1824, he twice refused to become President. He became the first Fullerian Professor of Chemistry at the Royal Institution in 1833.
In 1832, Faraday was elected a Foreign Honorary Member of the American Academy of Arts and Sciences. He was elected a foreign member of the Royal Swedish Academy of Sciences in 1838. In 1840, he was elected to the American Philosophical Society. He was one of eight foreign members elected to the French Academy of Sciences in 1844. In 1849 he was elected as associated member to the Royal Institute of the Netherlands, which two years later became the Royal Netherlands Academy of Arts and Sciences and he was subsequently made foreign member.
Faraday had a nervous breakdown in 1839 but eventually returned to his investigations into electromagnetism. In 1848, as a result of representations by the Prince Consort, Faraday was awarded a grace and favour house in Hampton Court in Middlesex, free of all expenses and upkeep. This was the Master Mason's House, later called Faraday House, and now No. 37 Hampton Court Road. In 1858 Faraday retired to live there.
Having provided a number of various service projects for the British government, when asked by the government to advise on the production of chemical weapons for use in the Crimean War, Faraday refused to participate, citing ethical reasons. He also refused offers to publish his lectures, believing that they would lose impact if not accompanied by the live experiments. His reply to an offer from a publisher in a letter ends with: "I have always loved science more than money & because my occupation is almost entirely personal I cannot afford to get rich."
Faraday died at his house at Hampton Court on 25 August 1867, aged 75. He had some years before turned down an offer of burial in Westminster Abbey upon his death, but he has a memorial plaque there, near Isaac Newton's tomb. Faraday was interred in the dissenters' section of Highgate Cemetery.

Scientific achievements

Chemistry

Faraday's earliest chemical work was as an assistant to Humphry Davy. Faraday was involved in the study of chlorine; he discovered two new compounds of chlorine and carbon: hexachloroethane which he made via the chlorination of ethylene and carbon tetrachloride from the decomposition of the former. He also conducted the first rough experiments on the diffusion of gases, a phenomenon that was first pointed out by John Dalton. The physical importance of this phenomenon was more fully revealed by Thomas Graham and Joseph Loschmidt. Faraday succeeded in liquefying several gases, investigated the alloys of steel, and produced several new kinds of glass intended for optical purposes. A specimen of one of these heavy glasses subsequently became historically important; when the glass was placed in a magnetic field Faraday determined the rotation of the plane of polarisation of light. This specimen was also the first substance found to be repelled by the poles of a magnet.
Faraday invented an early form of what was to become the Bunsen burner, which is still in practical use in science laboratories around the world as a convenient source of heat.
Faraday worked extensively in the field of chemistry, discovering chemical substances such as benzene and liquefying gases such as chlorine. The liquefying of gases helped to establish that gases are the vapours of liquids possessing a very low boiling point and gave a more solid basis to the concept of molecular aggregation. In 1820 Faraday reported the first synthesis of compounds made from carbon and chlorine, C2Cl6 and CCl4, and published his results the following year. Faraday also determined the composition of the chlorine clathrate hydrate, which had been discovered by Humphry Davy in 1810. Faraday is also responsible for discovering the laws of electrolysis, and for popularising terminology such as anode, cathode, electrode, and ion, terms proposed in large part by William Whewell.
Faraday was the first to report what later came to be called metallic nanoparticles. In 1857 he discovered that the optical properties of gold colloids differed from those of the corresponding bulk metal. This was probably the first reported observation of the effects of quantum size, and might be considered to be the birth of nanoscience.