Polystyrene
Polystyrene is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. Pound for pound it is a very cheap resin, a fairly poor barrier to oxygen and water vapor, has a relatively low melting point. Polystyrene is one of the most widely used plastics, with the scale of its production being several million tonnes per year. Polystyrene is naturally transparent to visible light, but can be colored with colorants. Uses include protective packaging, containers, lids, bottles, trays, tumblers, disposable cutlery, in the making of models, and as an alternative material for phonograph records.
As a thermoplastic polymer, polystyrene is in a solid state at room temperature but flows if heated above about 100 °C, its glass transition temperature. It becomes rigid again when cooled. This temperature behaviour is exploited for extrusion and also for molding and vacuum forming, since it can be cast into molds with fine detail. The temperatures behavior can be controlled by photocrosslinking.
Under ASTM standards, polystyrene is regarded as not biodegradable. It is accumulating as a form of litter in the outside environment, particularly along shores and waterways, especially in its foam form, and in the Pacific Ocean.
History
Polystyrene was discovered in 1839 by Eduard Simon, an apothecary from Berlin. From storax, the resin of the Oriental sweetgum tree Liquidambar orientalis, he distilled an oily substance, that he named styrol, now called styrene. Several days later, Simon found that it had thickened into a jelly, now known to have been a polymer, that he dubbed styrol oxide because he presumed that it had resulted from oxidation. By 1845 Jamaican-born chemist John Buddle Blyth and German chemist August Wilhelm von Hofmann showed that the same transformation of styrol took place in the absence of oxygen. They called the product "meta styrol"; analysis showed that it was chemically identical to Simon's Styroloxyd. In 1866 Marcellin Berthelot correctly identified the formation of meta styrol/Styroloxyd from styrol as a polymerisation process. About 80 years later it was realized that heating of styrol starts a chain reaction that produces macromolecules, following the thesis of German organic chemist Hermann Staudinger. This eventually led to the substance receiving its present name, polystyrene.The company I. G. Farben began manufacturing polystyrene in Ludwigshafen, about 1931, hoping it would be a suitable replacement for die-cast zinc in many applications. Success was achieved when they developed a reactor vessel that extruded polystyrene through a heated tube and cutter, producing polystyrene in pellet form.
Ray McIntire, a chemical engineer of Dow Chemical, rediscovered a process first patented in early 1930s by Swedish inventor Carl Munters. According to the Science History Institute, "Dow bought the rights to Munters's method and began producing a lightweight, water-resistant, and buoyant material that seemed perfectly suited for building docks and watercraft and for insulating homes, offices, and chicken sheds." In 1944, Styrofoam was patented.
Before 1949, chemical engineer Fritz Stastny developed pre-expanded PS beads by incorporating aliphatic hydrocarbons, such as pentane. These beads are the raw material for molding parts or extruding sheets. BASF and Stastny applied for a patent that was issued in 1949. The molding process was demonstrated at the Kunststoff Messe 1952 in Düsseldorf. Products were named Styropor.
The crystal structure of isotactic polystyrene was reported by Giulio Natta.
In 1954, the Koppers Company in Pittsburgh, Pennsylvania, developed expanded polystyrene foam under the trade name Dylite. In 1960, Dart Container, the largest manufacturer of foam cups, shipped their first order.
Structure and production
In chemical terms, polystyrene is a long chain hydrocarbon wherein alternating carbon centers are attached to phenyl groups. Polystyrene's chemical formula is ; it contains the chemical elements carbon and hydrogen.The material's properties are determined by short-range van der Waals attractions between polymer chains. Since the molecules consist of thousands of atoms, the cumulative attractive force between the molecules is large. When heated, the chains can take on a higher degree of confirmation and slide past each other. This intermolecular weakness confers flexibility and elasticity. The ability of the system to be readily deformed above its glass transition temperature allows polystyrene to be readily softened and molded upon heating. Extruded polystyrene is about as strong as an unalloyed aluminium but much more flexible and much less dense.
Production
Polystyrene is an addition polymer that results when styrene monomers polymerize. In the polymerization, the carbon-carbon π bond of the vinyl group is broken and a new carbon-carbon σ bond is formed, attaching to the carbon of another styrene monomer to the chain. Since only one kind of monomer is used in its preparation, it is a homopolymer. The newly formed σ bond is stronger than the π bond that was broken, thus it is difficult to depolymerize polystyrene. About a few thousand monomers typically comprise a chain of polystyrene, giving a molar mass of 100,000–400,000 g/mol.Each carbon of the backbone has tetrahedral geometry, and those carbons that have a phenyl group attached are stereogenic. If the backbone were to be laid as a flat elongated zig-zag chain, each phenyl group would be tilted forward or backward compared to the plane of the chain.
The relative stereochemical relationship of consecutive phenyl groups determines the tacticity, which affects various physical properties of the material.
Tacticity
In polystyrene, tacticity describes the extent to which the phenyl group is uniformly aligned in the polymer chain. Tacticity has a strong effect on the properties of the plastic. Standard polystyrene is atactic. The diastereomer where all of the phenyl groups are on the same side is called isotactic polystyrene, which is not produced commercially.Atactic polystyrene
The only commercially important form of polystyrene is atactic, in which the phenyl groups are randomly distributed on both sides of the polymer chain. This random positioning prevents the chains from aligning with sufficient regularity to achieve any crystallinity. The plastic has a glass transition temperature Tg of ≈90 °C. Polymerization is initiated with free radicals.Syndiotactic polystyrene
can produce an ordered syndiotactic polystyrene with the phenyl groups positioned on alternating sides of the hydrocarbon backbone. This form is highly crystalline with a Tm of. Syndiotactic polystyrene resin is currently produced under the trade name XAREC by Idemitsu corporation, who use a metallocene catalyst for the polymerisation reaction.Degradation
Polystyrene is relatively chemically inert. While it is waterproof and resistant to breakdown by many acids and bases, it is easily attacked by many organic solvents, chlorinated solvents, and aromatic hydrocarbon solvents. Because of its resilience and inertness, it is used for fabricating many objects of commerce. Like other organic compounds, polystyrene burns to give carbon dioxide and water vapor, in addition to other thermal degradation by-products. Polystyrene, being an aromatic hydrocarbon, typically combusts incompletely as indicated by the sooty flame.The process of depolymerizing polystyrene into its monomer, styrene, is called pyrolysis. This involves using high heat and pressure to break down the chemical bonds between each styrene compound. Pyrolysis usually goes up to 430 °C. The high energy cost of doing this has made commercial recycling of polystyrene back into styrene monomer difficult.
Organisms
Polystyrene is generally considered to be non-biodegradable. However, certain organisms are able to degrade it, albeit very slowly.In 2015, researchers discovered that mealworms, the larvae form of the darkling beetle Tenebrio molitor, could digest and subsist healthily on a diet of EPS. About 100 mealworms could consume between 34 and 39 milligrams of this white foam in a day. The droppings of mealworm were found to be safe for use as soil for crops.
In 2016, it was also reported that superworms may eat expanded polystyrene. A group of high school students in Ateneo de Manila University found that compared to Tenebrio molitor larvae, Zophobas morio larvae may consume greater amounts of EPS over longer periods of time.
In 2022 scientists identified several bacterial genera, including Pseudomonas, Rhodococcus and Corynebacterium, in the gut of superworms that contain encoded enzymes associated with the degradation of polystyrene and the breakdown product styrene.
The bacterium Pseudomonas putida is capable of converting styrene oil into the biodegradable plastic PHA. This may someday be of use in the effective disposing of polystyrene foam. It is worthy to note the polystyrene must undergo pyrolysis to turn into styrene oil.
Forms produced
Polystyrene is commonly injection molded, vacuum formed, or extruded, while expanded polystyrene is either extruded or molded in a special process.Polystyrene copolymers are also produced; these contain one or more other monomers in addition to styrene. In recent years the expanded polystyrene composites with cellulose and starch have also been produced. Polystyrene is used in some polymer-bonded explosives.
Sheet or molded polystyrene
Polystyrene is used for producing disposable plastic cutlery and dinnerware, CD "jewel" cases, smoke detector housings, license plate frames, plastic model assembly kits, and many other objects where a rigid, economical plastic is desired. Production methods include thermoforming and injection molding.Polystyrene Petri dishes and other laboratory containers such as test tubes and microplates play an important role in biomedical research and science. For these uses, articles are almost always made by injection molding, and often sterilized post-molding, either by irradiation or by treatment with ethylene oxide. Post-mold surface modification, usually with oxygen-rich plasmas, is often done to introduce polar groups. Much of modern biomedical research relies on the use of such products; they, therefore, play a critical role in pharmaceutical research.
Thin sheets of polystyrene are used in polystyrene film capacitors as it forms a very stable dielectric, but has largely fallen out of use in favor of polyester.