Polybutadiene


Polybutadiene is a synthetic rubber. It offers high elasticity, high resistance to wear, good strength even without fillers, and excellent abrasion resistance when filled and vulcanized. "Polybutadiene" is a collective name for homopolymers formed from the polymerization of the monomer 1,3-butadiene. The IUPAC refers to polybutadiene as "poly". Historically, an early generation of synthetic polybutadiene rubber produced in Germany by Bayer using sodium as a catalyst was known as "Buna rubber". Polybutadiene is typically crosslinked with sulphur, however, it has also been shown that it can be UV cured when bis-benzophenone additives are incorporated into the formulation.
Polybutadiene rubber accounted for about 28% of total global consumption of synthetic rubbers in 2020, whereas styrene-butadiene rubber was by far the most important grade. It is mainly used in the manufacture of tires, which consumes about 70% of the production. Another 25% is used as an additive to improve the toughness of plastics such as polystyrene and acrylonitrile butadiene styrene. Polybutadiene is also used to manufacture golf balls, various elastic objects and to coat or encapsulate electronic assemblies, offering high electrical resistivity.

History

The Russian chemist Sergei Vasilyevich Lebedev was the first to polymerize butadiene in 1910. In 1926 he invented a process for manufacturing butadiene from ethanol, and in 1928, developed a method for producing polybutadiene using sodium as a catalyst.
The government of the Soviet Union strove to use polybutadiene as an alternative to natural rubber and built the first pilot plant in 1930, using ethanol produced from potatoes. The experiment was a success and in 1936 the Soviet Union built the world's first polybutadiene plant in which the butadiene was obtained from petroleum. By 1940, the Soviet Union was by far the largest producer of polybutadiene with 50,000 tons per year.
Following Lebedev's work, other industrialized countries such as Germany and the United States developed polybutadiene and SBR as an alternative to natural rubber.
In the mid-1950s there were major advances in the field of catalysts that led to the development of an improved versions of polybutadiene. The leading manufacturers of tires and some petrochemical companies began to build polybutadiene plants on all inhabited continents; the boom lasted until the 1973 oil crisis. Since then, the growth rate of the production has been more modest, focused mainly in the Far East.
In Germany, scientists from Bayer reproduced Lebedev's processes of producing polybutadiene by using sodium as a catalyst. For this, they used the trade name Buna, derived from Bu for butadiene, Na for sodium. They discovered that the addition of styrene to the process resulted in better properties, and thus opted for this route. They had invented styrene-butadiene, which was named Buna-S.
Although the Goodrich Corporation had successfully developed a process for producing polybutadiene in 1939, the U.S. federal government opted for the use of Buna-S to develop its synthetic-rubber industry after its entry into the World War II, using patents of IG Farben obtained via Standard Oil. Because of this, there was little industrial production of polybutadiene in America during this time.
After the war, the production of synthetic rubber was in decline due to the decrease in demand when natural rubber was readily available again. However, interest was renewed in the mid-1950s after the discovery of the Ziegler–Natta catalyst. This method proved to be much better for tire manufacturing than the old sodium polybutadiene. The following year, Firestone Tire and Rubber Company was first to produce low cis polybutadiene using butyllithium as a catalyst.
The relatively high production costs were a hindrance to commercial development until 1960 when production on a commercial scale began. Tire manufacturers like Goodyear Tire and Rubber Company and Goodrich were the first to produce plants for high cis polybutadiene, this was followed by oil companies like Shell and chemical manufacturers such as Bayer.
Initially, with plants built in the United States and France, Firestone enjoyed a monopoly on low cis polybutadiene, licensing it to plants in Japan and the United Kingdom. In 1965, the Japanese JSR Corporation developed its own low cis process and began licensing it during the next decade.
The 1973 oil crisis marked a halt to the growth of synthetic rubber production; the expansion of existing plants almost ceased for a few years. Since then, the construction of new plants has mainly taken place in industrializing countries in the Far East, while Western countries have chosen to increase the capacity of existing plants.
In 1987, Bayer started to use neodymium-based catalysts to catalyze polybutadiene. Soon thereafter other manufacturers deployed related technologies such as EniChem and Petroflex.
In the early 2000s, the synthetic rubber industry was once again hit by one of its periodic crises. The world's largest producer of polybutadiene, Bayer, went through major restructuring as it was troubled by financial losses; between 2002 and 2005 it closed its cobalt-polybutadiene plants in Sarnia and Marl, transferring their production to neodymium plants in Port Jérôme and Orange. During the same time, the synthetic rubber business was transferred from Bayer to Lanxess, a company founded in 2004 when Bayer spun off its chemicals operations and parts of its polymer activities.

Polymerization of butadiene

1,3-Butadiene is an organic compound that is a simple conjugated diene hydrocarbon. Polybutadiene forms by linking many 1,3-butadiene monomers to make a much longer polymer chain molecule. In terms of the connectivity of the polymer chain, butadiene can polymerize in three different ways, called cis, trans and vinyl. The cis and trans forms arise by connecting the butadiene molecules end-to-end, so-called 1,4-polymerisation. The properties of the resulting isomeric forms of polybutadiene differ. For example, "high cis"-polybutadiene has a high elasticity and is very popular, whereas the so-called "high trans" is a plastic crystal with few useful applications. The vinyl content of polybutadiene is typically no more than a few percent. In addition to these three kinds of connectivity, polybutadienes differ in terms of their branching and molecular weights.
The trans double bonds formed during polymerization allow the polymer chain to stay rather straight, allowing sections of polymer chains to align to form microcrystalline regions in the material. The cis double bonds cause a bend in the polymer chain, preventing polymer chains from aligning to form crystalline regions, which results in larger regions of amorphous polymer. It has been found that a substantial percentage of cis double bond configurations in the polymer will result in a material with flexible elastomer qualities. In free radical polymerization, both cis and trans double bonds will form in percentages that depend on temperature. The catalysts influence the cis vs trans ratio.

Types

The catalyst used in the production significantly affects the type of polybutadiene product.

High ''cis'' polybutadiene

This type is characterized by a high proportion of cis and a small proportion of vinyl. It is manufactured using Ziegler–Natta catalysts based on transition metals. Depending on the metal used, the properties vary slightly.
Using cobalt gives branched molecules, resulting in a low viscosity material that is easy to use, but its mechanical strength is relatively low. Neodymium gives the most linear structure and a higher percentage of 98% cis. Other less-used catalysts include nickel and titanium.

Low ''cis'' polybutadiene

Using an alkyllithium as the catalyst produces a polybutadiene called "low cis" which typically contains 36% cis, 54% trans and 10% vinyl.
Despite its high liquid-glass transition, low cis polybutadiene is used in tire manufacturing and is blended with other tire polymers, also it can be advantageously used as an additive in plastics due to its low contents of gels.

High vinyl polybutadiene

In 1980, researchers from the Japanese company, Zeon, discovered that high-vinyl polybutadiene, despite having a high liquid-glass transition, could be advantageously used in combination with high cis in tires. This material is produced with an alkyllithium catalyst.

High ''trans'' polybutadiene

Polybutadiene can be produced with more than 90% trans using catalysts similar to those of high cis: neodymium, lanthanum, nickel. This material is a plastic crystal which melts at about 80 °C. It was formerly used for the outer layer of golf balls. Today it is only used industrially, but companies like Ube are investigating other possible applications.

Other

Metallocene polybutadiene
The use of metallocene catalysts to polymerize butadiene is being explored by Japanese researchers. The benefits seem to be a higher degree of control both in the distribution of molecular mass and the proportion of cis/trans/vinyl. As of 2006, no manufacturer produces "metallocene polybutadiene" on a commercial basis.
Copolymers
1,3-butadiene is normally copolymerized with other types of monomers such as styrene and acrylonitrile to form rubbers or plastics with various qualities. The most common form is styrene-butadiene copolymer, which is a commodity material for car tires. It is also used in block copolymers and tough thermoplastics such as ABS plastic. This way a copolymer material can be made with good stiffness, hardness, and toughness.
Because the chains have a double bond in each and every repeat unit, the material is sensitive to ozone cracking.