Polycyclic aromatic hydrocarbon
A polycyclic aromatic hydrocarbon is any member of a class of organic compounds that is composed of multiple fused aromatic rings. Most are produced by the incomplete combustion of organic matter—by engine exhaust fumes, tobacco, incinerators, in roasted meats and cereals, or when biomass burns at lower temperatures as in forest fires. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are also found in fossil fuel deposits such as coal and in petroleum. Exposure to PAHs can lead to different types of cancer, to fetal development complications, and to cardiovascular issues.
Polycyclic aromatic hydrocarbons are discussed as possible starting materials for abiotic syntheses of materials required by the earliest forms of life.
Nomenclature and structure
The terms polyaromatic hydrocarbon, or polynuclear aromatic hydrocarbon are also used for this concept.By definition, polycyclic aromatic hydrocarbons have multiple aromatic rings, precluding benzene from being considered a PAH. Sources such as the US EPA and CDC consider naphthalene to be the simplest PAH. Most authors exclude compounds that include heteroatoms in the rings, or carry substituents.
A polyaromatic hydrocarbon may have rings of various sizes, including some that are not aromatic. Those that have only six-membered rings are said to be alternant.
The following sets of examples illustrate several of the types of variations that are possible.
Geometry
Most PAHs, like naphthalene, anthracene, and coronene, are planar. This geometry is a consequence of the fact that the σ-bonds that result from the merger of sp2 hybrid orbitals of adjacent carbons lie on the same plane as the carbon atom. Those compounds are achiral, since the plane of the molecule is a symmetry plane.In rare cases, PAHs are not planar. In some cases, the non-planarity may be forced by the topology of the molecule and the stiffness of the carbon-carbon bonds. For example, unlike coronene, corannulene adopts a bowl shape in order to reduce the bond stress. The two possible configurations, concave and convex, are separated by a relatively low energy barrier.
In theory, there are 51 structural isomers of coronene that have six fused benzene rings in a cyclic sequence, with two edge carbons shared between successive rings. All of them must be non-planar and have considerable higher bonding energy than coronene; as of 2002, none of them had been synthesized.
Other PAHs that might seem to be planar, considering only the carbon skeleton, may be distorted by repulsion or steric hindrance between the hydrogen atoms in their periphery. Benzophenanthrene, with four rings fused in a "C" shape, has a slight helical distortion due to repulsion between the closest pair of hydrogen atoms in the two extremal rings. This effect also causes distortion of picene.
Adding another benzene ring to form dibenzophenanthrene creates steric hindrance between the two extreme hydrogen atoms. Adding two more rings on the same sense yields heptahelicene in which the two extreme rings overlap. These non-planar forms are chiral, and their enantiomers can be isolated.
Benzenoid hydrocarbons
The benzenoid hydrocarbons have been defined as condensed polycyclic unsaturated fully-conjugated hydrocarbons whose molecules are essentially planar with all rings six-membered. Full conjugation means that all carbon atoms and carbon-carbon bonds must have the sp2 structure of benzene. This class is largely a subset of the alternant PAHs, but is considered to include unstable or hypothetical compounds like triangulene or heptacene.As of 2012, over 300 benzenoid hydrocarbons had been isolated and characterized.
Bonding and aromaticity
The aromaticity varies for PAHs. According to Clar's rule, the resonance structure of a PAH that has the largest number of disjoint aromatic pi sextets—i.e. benzene-like moieties—is the most important for the characterization of the properties of that PAH.For example, phenanthrene has two Clar structures: one with just one aromatic sextet, and the other with two. The latter case is therefore the more characteristic electronic nature of the two. Therefore, in this molecule the outer rings have greater aromatic character whereas the central ring is less aromatic and therefore more reactive. In contrast, in anthracene the resonance structures have one sextet each, which can be at any of the three rings, and the aromaticity spreads out more evenly across the whole molecule. This difference in number of sextets is reflected in the differing ultraviolet–visible spectra of these two isomers, as higher Clar pi-sextets are associated with larger HOMO-LUMO gaps; the highest-wavelength absorbance of phenanthrene is at 293 nm, while anthracene is at 374 nm. Three Clar structures with two sextets each are present in the four-ring chrysene structure: one having sextets in the first and third rings, one in the second and fourth rings, and one in the first and fourth rings. Superposition of these structures reveals that the aromaticity in the outer rings is greater compared to the inner rings.
Properties
Physicochemical
PAHs are nonpolar and lipophilic. Larger PAHs are generally insoluble in water, although some smaller PAHs are soluble. The larger members are also poorly soluble in organic solvents and in lipids. The larger members, e.g. perylene, are strongly colored.Redox
Polycyclic aromatic compounds characteristically yield radicals and anions upon treatment with alkali metals. The large PAH form dianions as well. The redox potential correlates with the size of the PAH.Artificial
The dominant sources of PAHs in the environment are from human activity: wood-burning and combustion of other biofuels such as dung or crop residues contribute more than half of annual global PAH emissions, particularly due to biofuel use in India and China. As of 2004, industrial processes and the extraction and use of fossil fuels made up slightly more than one quarter of global PAH emissions, dominating outputs in industrial countries such as the United States.A year-long sampling campaign in Athens, Greece found a third of PAH urban air pollution to be caused by wood-burning, like diesel and oil and gasoline. It also found that wood-burning is responsible for nearly half of annual PAH cancer-risk compared to the other sources and that wintertime PAH levels were 7 times higher than in other seasons, especially if atmospheric dispersion is low.
Lower-temperature combustion, such as tobacco smoking or wood-burning, tends to generate low molecular weight PAHs, whereas high-temperature industrial processes typically generate PAHs with higher molecular weights. Incense is also a source.
PAHs are typically found as complex mixtures.
Natural
Natural fires
PAHs may result from the incomplete combustion of organic matter in natural wildfires. Substantially higher outdoor air, soil, and water concentrations of PAHs have been measured in Asia, Africa, and Latin America than in Europe, Australia, the U.S., and Canada.Fossil carbon
Polycyclic aromatic hydrocarbons are primarily found in natural sources such as bitumen.PAHs can also be produced geologically when organic sediments are chemically transformed into fossil fuels such as oil and coal. The rare minerals idrialite, curtisite, and carpathite consist almost entirely of PAHs that originated from such sediments, that were extracted, processed, separated, and deposited by very hot fluids.
High levels of such PAHs have been detected in the Cretaceous-Tertiary boundary, more than 100 times the level in adjacent layers. The spike was attributed to massive fires that consumed about 20% of the terrestrial above-ground biomass in a very short time.
Extraterrestrial
PAHs are prevalent in the interstellar medium of galaxies in both the nearby and distant Universe and make up a dominant emission mechanism in the mid-infrared wavelength range, containing as much as 10% of the total integrated infrared luminosity of galaxies. PAHs generally trace regions of cold molecular gas, which are optimum environments for the formation of stars.NASA's Spitzer Space Telescope and James Webb Space Telescope include instruments for obtaining both images and spectra of light emitted by PAHs associated with star formation. These images can trace the surface of star-forming clouds in our own galaxy or identify star forming galaxies in the distant universe. In June 2013, PAHs were detected in the upper atmosphere of Titan, the largest moon of the planet Saturn.
Minor sources
s may emit PAHs.Certain PAHs such as perylene can also be generated in anaerobic sediments from existing organic material, although it remains undetermined whether abiotic or microbial processes drive their production.
Distribution in the environment
Aquatic environments
Most PAHs are insoluble in water, which limits their mobility in the environment, although PAHs sorb to fine-grained organic-rich sediments. Aqueous solubility of PAHs decreases approximately logarithmically as molecular mass increases.Two-ringed PAHs, and to a lesser extent three-ringed PAHs, dissolve in water, making them more available for biological uptake and degradation. Further, two- to four-ringed PAHs volatilize sufficiently to appear in the atmosphere predominantly in gaseous form, although the physical state of four-ring PAHs can depend on temperature. In contrast, compounds with five or more rings have low solubility in water and low volatility; they are therefore predominantly in solid state, bound to particulate air pollution, soils, or sediments. In solid state, these compounds are less accessible for biological uptake or degradation, increasing their persistence in the environment.