Big Bang


The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including the abundance of light elements, the cosmic microwave background radiation, and large-scale structure. The uniformity of the universe, known as the horizon and flatness problems, is explained through cosmic inflation: a phase of accelerated expansion during the earliest stages. Detailed measurements of the expansion rate of the universe place the initial singularity at an estimated billion years ago, which is considered the age of the universe. A wide range of empirical evidence strongly favors the Big Bang event, which is now widely accepted.
Extrapolating this cosmic expansion backward in time using the known laws of physics, the models describe an extraordinarily hot and dense primordial universe. Physics lacks a widely accepted theory that can model the earliest conditions of the Big Bang. As the universe expanded, it cooled sufficiently to allow the formation of subatomic particles, and later atoms. These primordial elements—mostly hydrogen, with some helium and lithium—then coalesced under the force of gravity aided by dark matter, forming early stars and galaxies. Measurements of the redshifts of supernovae indicate that the expansion of the universe is accelerating, an observation attributed to a concept called dark energy.
The concept of an expanding universe was introduced by the physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations. The earliest empirical observation of an expanding universe is known as Hubble's law, published in work by physicist Edwin Hubble in 1929, which discerned that galaxies are moving away from Earth at a rate that accelerates proportionally with distance. Independent of Friedmann's work, and independent of Hubble's observations, in 1931 physicist Georges Lemaître proposed that the universe emerged from a "primeval atom", introducing the modern notion of the Big Bang. In 1964, the CMB was discovered. Over the next few years measurements showed this radiation to be uniform over directions in the sky and the shape of the energy versus intensity curve, both consistent with the Big Bang models of high temperatures and densities in the distant past. By the late 1960s most cosmologists were convinced that competing steady-state model of cosmic evolution was incorrect.
There remain aspects of the observed universe that are not yet adequately explained by the Big Bang models. These include the unequal abundances of matter and antimatter known as baryon asymmetry, the detailed nature of dark matter surrounding galaxies, and the origin of dark energy.

Features of the models

Assumptions

Big Bang cosmology models depend on three major assumptions: the universality of physical laws, the cosmological principle, and that the matter content can be modeled as a perfect fluid. The universality of physical laws is one of the underlying principles of the theory of relativity. The cosmological principle states that on large scales the universe is homogeneous and isotropic—appearing the same in all directions regardless of location. A perfect fluid has no viscosity; the pressure of a perfect fluid is proportional to its density.
These ideas were initially taken as postulates, but later efforts were made to test each of them. For example, the first assumption has been tested by observations showing that the largest possible deviation of the fine-structure constant over much of the age of the universe is of order 10−5. The key physical law behind these models, general relativity has passed stringent tests on the scale of the Solar System and binary stars.
The cosmological principle has been confirmed to a level of 10−5 via observations of the temperature of the CMB. At the scale of the CMB horizon, the universe has been measured to be homogeneous with an upper bound on the order of 10% inhomogeneity, as of 1995.

Expansion prediction

The cosmological principle dramatically simplifies the equations of general relativity, giving the Friedmann–Lemaître–Robertson–Walker metric to describe the geometry of the universe and, with the assumption of a perfect fluid, the Friedmann equations giving the time dependence of that geometry. The only parameter at this level of description is the mass-energy density: the geometry of the universe and its expansion is a direct consequence of its density. All of the major features of Big Bang cosmology are related to these results.

Mass-energy density

In Big Bang cosmology, the mass–energy density controls the shape and evolution of the universe. By combining astronomical observations with known laws of thermodynamics and particle physics, cosmologists have worked out the components of the density over the lifespan of the universe. In the current universe, luminous matter, the stars, planets, and so on makes up less than 5% of the density. Dark matter accounts for 27% and dark energy the remaining 68%.

Horizons

An important feature of the Big Bang spacetime is the presence of particle horizons. Since the universe has a finite age, and light travels at a finite speed, there may be events in the past whose light has not yet had time to reach earth. This places a limit or a past horizon on the most distant objects that can be observed. Conversely, because space is expanding, and more distant objects are receding ever more quickly, light emitted by us today may never "catch up" to very distant objects. This defines a future horizon, which limits the events in the future that we will be able to influence. The presence of either type of horizon depends on the details of the Friedmann–Lemaître–Robertson–Walker metric that describes the expansion of the universe.
Our understanding of the universe back to very early times suggests that there is a past horizon, though in practice our view is also limited by the opacity of the universe at early times. So our view cannot extend further backward in time, though the horizon recedes in space. If the expansion of the universe continues to accelerate, there is a future horizon as well.

Thermalization

Some processes in the early universe occurred too slowly, compared to the expansion rate of the universe, to reach approximate thermodynamic equilibrium. Others were fast enough to reach thermalization. The parameter usually used to find out whether a process in the very early universe has reached thermal equilibrium is the ratio between the rate of the process and the Hubble parameter. The larger the ratio, the more time particles had to thermalize before they were too far away from each other.

Timeline

According to the Big Bang models, the universe at the beginning was very hot and very compact, and since then it has been expanding and cooling.

Singularity

Existing theories of physics cannot tell us about the moment of the Big Bang.
Extrapolation of the expansion of the universe backwards in time using only classical general relativity yields a gravitational singularity with infinite density and temperature at a finite time in the past. However this classical gravitational theory is expected to be inadequate to describe physics under these conditions.
Thus the meaning of this singularity in the context of the Big Bang is unclear.
The earliest time that general relativity can be applied is called the Planck time. Earlier, during the Planck epoch, when the temperature of the universe was close to the Planck scale quantum gravity effects are expected to be dominant. To date there is no accepted theory of quantum gravity; above the Planck energy scale, undiscovered physics could influence the expansion history of the universe.

Inflation and baryogenesis

The earliest phases of the Big Bang are subject to much speculation, given the lack of available data. In the most common models the universe was filled homogeneously and isotropically with a very high energy density and huge temperatures and pressures, and was very rapidly expanding and cooling. The period up to 10−43 seconds into the expansion, the Planck epoch, was a phase in which the four fundamental forces—the electromagnetic force, the strong nuclear force, the weak nuclear force, and the gravitational forcewere unified as one. In this stage, the characteristic scale length of the universe was the Planck length,, and consequently had a temperature of approximately 1032 degrees Celsius. Even the very concept of a particle breaks down in these conditions. A proper understanding of this period awaits the development of a theory of quantum gravity. The Planck epoch was succeeded by the grand unification epoch beginning at 10−43 seconds, where gravitation separated from the other forces as the universe's temperature fell.
At approximately 10−37 seconds into the expansion, a phase transition caused a cosmic inflation, during which the universe grew exponentially, unconstrained by the light speed invariance, and temperatures dropped by a factor of 100,000. This concept is motivated by the flatness problem, where the density of matter and energy is very close to the critical density needed to produce a flat universe. That is, the shape of the universe has no overall geometric curvature due to gravitational influence. Microscopic quantum fluctuations that occurred because of Heisenberg's uncertainty principle were "frozen in" by inflation, becoming amplified into the seeds that would later form the large-scale structure of the universe. At a time around 10−36 seconds, the electroweak epoch begins when the strong nuclear force separates from the other forces, with only the electromagnetic force and weak nuclear force remaining unified.
All of the mass-energy in all of the galaxies currently visible started in a sphere with a radius around 4 x 10-29 m then grew to a sphere with a radius around 0.9 m by the end of inflation. Reheating followed as the inflaton field decayed, until the universe obtained the temperatures required for the production of a quark–gluon plasma as well as all other elementary particles. Temperatures were so high that the random motions of particles were at relativistic speeds, and particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point, an unknown reaction called baryogenesis violated the conservation of baryon number, leading to a very small excess of quarks and leptons over antiquarks and antileptonsof the order of one part in 30 million. This resulted in the predominance of matter over antimatter in the present universe.