Passive solar building design
In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.
The key to designing a passive solar building is to best take advantage of the local climate performing an accurate site analysis. Elements to be considered include window placement and size, and glazing type, thermal insulation, thermal mass, and shading. Passive solar design techniques can be applied most easily to new buildings, but existing buildings can be adapted or "retrofitted".
Passive energy gain
Passive solar technologies use sunlight without active mechanical systems. Such technologies convert sunlight into usable heat, cause air-movement for ventilating, or future use, with little use of other energy sources. A common example is a solarium on the equator-side of a building. Passive cooling is the use of similar design principles to reduce summer cooling requirements.Some passive systems use a small amount of conventional energy to control dampers, shutters, night insulation, and other devices that enhance solar energy collection, storage, and use, and reduce undesirable heat transfer.
Passive solar technologies include direct and indirect solar gain for space heating, solar water heating systems based on the thermosiphon, use of thermal mass and phase-change materials for slowing indoor air temperature swings, solar cookers, the solar chimney for enhancing natural ventilation, and earth sheltering.
More widely, solar technologies include the solar furnace, but this typically requires some external energy for aligning their concentrating mirrors or receivers, and historically have not proven to be practical or cost effective for widespread use. 'Low-grade' energy needs, such as space and water heating, have proven over time to be better applications for passive use of solar energy.
As a science
The scientific basis for passive solar building design has been developed from a combination of climatology, thermodynamics, fluid mechanics/natural convection, and human thermal comfort based on heat index, psychrometrics and enthalpy control for buildings to be inhabited by humans or animals, sunrooms, solariums, and greenhouses for raising plants.Specific attention is divided into: the site, location and solar orientation of the building, local sun path, the prevailing level of insolation, design and construction quality/materials, placement/size/type of windows and walls, and incorporation of solar-energy-storing thermal mass with heat capacity.Image:Illust passive solar d1.gif|thumb|upright=1.5|right|Elements of passive solar design, shown in a direct gain applicationWhile these considerations may be directed toward any building, achieving an ideal optimized cost/performance solution requires careful, holistic, system integration engineering of these scientific principles. Modern refinements through computer modeling, and application of decades of lessons learned can achieve significant energy savings and reduction of environmental damage, without sacrificing functionality or aesthetics. In fact, passive-solar design features such as a greenhouse/sunroom/solarium can greatly enhance the livability, daylight, views, and value of a home, at a low cost per unit of space.
Much has been learned about passive solar building design since the 1970s energy crisis. Many unscientific, intuition-based expensive construction experiments have attempted and failed to achieve zero energy – the total elimination of heating-and-cooling energy bills.
Passive solar building construction may not be difficult or expensive, but the scientific passive solar building design is a non-trivial engineering effort that requires significant study of previous counter-intuitive lessons learned, and time to enter, evaluate, and iteratively refine the simulation input and output.
One of the most useful post-construction evaluation tools has been the use of thermography using digital thermal imaging cameras for a formal quantitative scientific energy audit. Thermal imaging can be used to document areas of poor thermal performance such as the negative thermal impact of roof-angled glass or a skylight on a cold winter night or hot summer day.
The scientific lessons learned over the last three decades have been captured in sophisticated comprehensive building energy simulation computer software systems.
Scientific passive solar building design with quantitative cost benefit product optimization is not easy for a novice. The level of complexity has resulted in ongoing bad-architecture, and many intuition-based, unscientific construction experiments that disappoint their designers and waste a significant portion of their construction budget on inappropriate ideas.
The economic motivation for scientific design and engineering is significant. If it had been applied comprehensively to new building construction beginning in 1980, The United States could be saving over $250,000,000 per year on expensive energy and related pollution today.
Since 1979, Passive Solar Building Design has been a critical element of achieving zero energy by educational institution experiments, and governments around the world, including the U.S. Department of Energy, and the energy research scientists that they have supported for decades. The cost effective proof of concept was established decades ago, but cultural change in architecture, the construction trades, and building-owner decision making has been very slow and difficult.
The new subjects such as architectural science and architectural technology are being added to some schools of architecture, with a future goal of teaching the above scientific and energy-engineering principles.
The solar path in passive design
The ability to achieve these goals simultaneously is fundamentally dependent on the seasonal variations in the sun's path throughout the day.This occurs as a result of the inclination of the Earth's axis of rotation in relation to its orbit. The sun path is unique for any given latitude.
In Northern Hemisphere non-tropical latitudes farther than 23.5 degrees from the equator:
- The sun will reach its highest point toward the south
- As winter solstice approaches, the angle at which the sun rises and sets progressively moves further toward the south and the daylight hours will become shorter
- The opposite is noted in summer where the sun will rise and set further toward the north and the daylight hours will lengthen
In equatorial regions at less than 23.5 degrees, the position of the sun at solar noon will oscillate from north to south and back again during the year.
In regions closer than 23.5 degrees from either north-or-south pole, during summer the sun will trace a complete circle in the sky without setting whilst it will never appear above the horizon six months later, during the height of winter.
The 47-degree difference in the altitude of the sun at solar noon between winter and summer forms the basis of passive solar design. This information is combined with local climatic data heating and cooling requirements to determine at what time of the year solar gain will be beneficial for thermal comfort, and when it should be blocked with shading. By strategic placement of items such as glazing and shading devices, the percentage of solar gain entering a building can be controlled throughout the year.
One passive solar sun path design problem is that although the sun is in the same relative position six weeks before, and six weeks after, the solstice, due to "thermal lag" from the thermal mass of the Earth, the temperature and solar gain requirements are quite different before and after the summer or winter solstice. Movable shutters, shades, shade screens, or window quilts can accommodate day-to-day and hour-to-hour solar gain and insulation requirements.
Careful arrangement of rooms completes the passive solar design. A common recommendation for residential dwellings is to place living areas facing solar noon and sleeping quarters on the opposite side. A heliodon is a traditional movable light device used by architects and designers to help model sun path effects. In modern times, 3D computer graphics can visually simulate this data, and calculate performance predictions.
Passive solar heat transfer principles
Personal thermal comfort is a function of personal health factors, ambient air temperature, mean radiant temperature, air movement and relative humidity. Heat transfer in buildings occurs through convection, conduction, and thermal radiation through roof, walls, floor and windows.Convective heat transfer
can be beneficial or detrimental. Uncontrolled air infiltration from poor weatherization / weatherstripping / draft-proofing can contribute up to 40% of heat loss during winter; however, strategic placement of operable windows or vents can enhance convection, cross-ventilation, and summer cooling when the outside air is of a comfortable temperature and relative humidity. Filtered energy recovery ventilation systems may be useful to eliminate undesirable humidity, dust, pollen, and microorganisms in unfiltered ventilation air.Natural convection causing rising warm air and falling cooler air can result in an uneven stratification of heat. This may cause uncomfortable variations in temperature in the upper and lower conditioned space, serve as a method of venting hot air, or be designed in as a natural-convection air-flow loop for passive solar heat distribution and temperature equalization. Natural human cooling by perspiration and evaporation may be facilitated through natural or forced convective air movement by fans, but ceiling fans can disturb the stratified insulating air layers at the top of a room, and accelerate heat transfer from a hot attic, or through nearby windows. In addition, high relative humidity inhibits evaporative cooling by humans.