Marine biogeochemical cycles
Marine biogeochemical cycles are biogeochemical cycles that occur within marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. These biogeochemical cycles are the pathways chemical substances and elements move through within the marine environment. In addition, substances and elements can be imported into or exported from the marine environment. These imports and exports can occur as exchanges with the atmosphere above, the ocean floor below, or as runoff from the land.
There are biogeochemical cycles for the elements calcium, carbon, hydrogen, mercury, nitrogen, oxygen, phosphorus, selenium, and sulfur; molecular cycles for water and silica; macroscopic cycles such as the rock cycle; as well as human-induced cycles for synthetic compounds such as polychlorinated biphenyl. In some cycles there are reservoirs where a substance can be stored for a long time. The cycling of these elements is interconnected.
Marine organisms, and particularly marine microorganisms are crucial for the functioning of many of these cycles. The forces driving biogeochemical cycles include metabolic processes within organisms, geological processes involving the Earth's mantle, as well as chemical reactions among the substances themselves, which is why these are called biogeochemical cycles. While chemical substances can be broken down and recombined, the chemical elements themselves can be neither created nor destroyed by these forces, so apart from some losses to and gains from outer space, elements are recycled or stored somewhere on or within the planet.
Overview
Energy flows directionally through ecosystems, entering as sunlight and leaving as heat during the many transfers between trophic levels. However, the matter that makes up living organisms is conserved and recycled. The six most common elements associated with organic molecules—carbon, nitrogen, hydrogen, oxygen, phosphorus, and sulfur—take a variety of chemical forms and may exist for long periods in the atmosphere, on land, in water, or beneath the Earth's surface. Geologic processes, such as weathering, erosion, water drainage, and the subduction of the continental plates, all play a role in this recycling of materials. Because geology and chemistry have major roles in the study of this process, the recycling of inorganic matter between living organisms and their environment is called a biogeochemical cycle.The six aforementioned elements are used by organisms in a variety of ways. Hydrogen and oxygen are found in water and organic molecules, both of which are essential to life. Carbon is found in all organic molecules, whereas nitrogen is an important component of nucleic acids and proteins. Phosphorus is used to make nucleic acids and the phospholipids that comprise biological membranes. Sulfur is critical to the three-dimensional shape of proteins. The cycling of these elements is interconnected. For example, the movement of water is critical for leaching sulfur and phosphorus into rivers which can then flow into oceans. Minerals cycle through the biosphere between the biotic and abiotic components and from one organism to another.
The water cycle
Water is the medium of the oceans, the medium which carries all the substances and elements involved in the marine biogeochemical cycles.Water as found in nature almost always includes dissolved substances, so water has been described as the "universal solvent" for its ability to dissolve so many substances. This ability allows it to be the "solvent of life" Water is also the only common substance that exists as solid, liquid, and gas in normal terrestrial conditions. Since liquid water flows, ocean waters cycle and flow in currents around the world. Since water easily changes phase, it can be carried into the atmosphere as water vapour or frozen as an iceberg. It can then precipitate or melt to become liquid water again. All marine life is immersed in water, the matrix and womb of life itself. Water can be broken down into its constituent hydrogen and oxygen by metabolic or abiotic processes, and later recombined to become water again.
While the water cycle is itself a biogeochemical cycle, flow of water over and beneath the Earth is a key component of the cycling of other biogeochemicals. Runoff is responsible for almost all of the transport of eroded sediment and phosphorus from land to waterbodies. Cultural eutrophication of lakes is primarily due to phosphorus, applied in excess to agricultural fields in fertilizers, and then transported overland and down rivers. Both runoff and groundwater flow play significant roles in transporting nitrogen from the land to waterbodies. The dead zone at the outlet of the Mississippi River is a consequence of nitrates from fertilizer being carried off agricultural fields and funnelled down the river system to the Gulf of Mexico. Runoff also plays a part in the carbon cycle, again through the transport of eroded rock and soil.
Ocean salinity
is derived mainly from the weathering of rocks and the transport of dissolved salts from the land, with lesser contributions from hydrothermal vents in the seafloor. Evaporation of ocean water and formation of sea ice further increase the salinity of the ocean. However these processes which increase salinity are continually counterbalanced by processes that decrease salinity, such as the continuous input of fresh water from rivers, precipitation of rain and snow, and the melting of ice. The two most prevalent ions in seawater are chloride and sodium. Together, they make up around 85 per cent of all dissolved ions in the ocean. Magnesium and sulfate ions make up most of the rest. Salinity varies with temperature, evaporation, and precipitation. It is generally low at the equator and poles, and high at mid-latitudes.Sea spray
A stream of airborne microorganisms circles the planet above weather systems but below commercial air lanes. Some peripatetic microorganisms are swept up from terrestrial dust storms, but most originate from marine microorganisms in sea spray. In 2018, scientists reported that hundreds of millions of viruses and tens of millions of bacteria are deposited daily on every square meter around the planet. This is another example of water facilitating the transport of organic material over great distances, in this case in the form of live microorganisms.Dissolved salt does not evaporate back into the atmosphere like water, but it does form sea salt aerosols in sea spray. Many physical processes over ocean surface generate sea salt aerosols. One common cause is the bursting of air bubbles, which are entrained by the wind stress during the whitecap formation. Another is tearing of drops from wave tops. The total sea salt flux from the ocean to the atmosphere is about 3300 Tg per year.
Ocean circulation
Solar radiation affects the oceans: warm water from the Equator tends to circulate toward the poles, while cold polar water heads towards the Equator. The surface currents are initially dictated by surface wind conditions. The trade winds blow westward in the tropics, and the westerlies blow eastward at mid-latitudes. This wind pattern applies a stress to the subtropical ocean surface with negative curl across the Northern Hemisphere, and the reverse across the Southern Hemisphere. The resulting Sverdrup transport is equatorward. Because of conservation of potential vorticity caused by the poleward-moving winds on the subtropical ridge's western periphery and the increased relative vorticity of poleward moving water, transport is balanced by a narrow, accelerating poleward current, which flows along the western boundary of the ocean basin, outweighing the effects of friction with the cold western boundary current which originates from high latitudes. The overall process, known as western intensification, causes currents on the western boundary of an ocean basin to be stronger than those on the eastern boundary.As it travels poleward, warm water transported by strong warm water current undergoes evaporative cooling. The cooling is wind driven: wind moving over water cools the water and also causes evaporation, leaving a saltier brine. In this process, the water becomes saltier and denser. and decreases in temperature. Once sea ice forms, salts are left out of the ice, a process known as brine exclusion. These two processes produce water that is denser and colder. The water across the northern Atlantic Ocean becomes so dense that it begins to sink down through less salty and less dense water. This downdraft of heavy, cold and dense water becomes a part of the North Atlantic Deep Water, a southgoing stream.
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature and salinity. This process is known as thermohaline circulation. In the Earth's polar regions ocean water gets very cold, forming sea ice. As a consequence the surrounding seawater gets saltier, because when sea ice forms, the salt is left behind. As the seawater gets saltier, its density increases, and it starts to sink. Surface water is pulled in to replace the sinking water, which in turn eventually becomes cold and salty enough to sink. This initiates the deep-ocean currents driving the global conveyor belt.
Thermohaline circulation drives a global-scale system of currents called the "global conveyor belt." The conveyor belt begins on the surface of the ocean near the pole in the North Atlantic. Here, the water is chilled by Arctic temperatures. It also gets saltier because when sea ice forms, the salt does not freeze and is left behind in the surrounding water. The cold water is now more dense, due to the added salts, and sinks toward the ocean bottom. Surface water moves in to replace the sinking water, thus creating a current. This deep water moves south, between the continents, past the equator, and down to the ends of Africa and South America. The current travels around the edge of Antarctica, where the water cools and sinks again, as it does in the North Atlantic. Thus, the conveyor belt gets "recharged." As it moves around Antarctica, two sections split off the conveyor and turn northward. One section moves into the Indian Ocean, the other into the Pacific Ocean. These two sections that split off warm up and become less dense as they travel northward toward the equator, so that they rise to the surface. They then loop back southward and westward to the South Atlantic, eventually returning to the North Atlantic, where the cycle begins again. The conveyor belt moves at much slower speeds than wind-driven or tidal currents. It is estimated that any given cubic meter of water takes about 1,000 years to complete the journey along the global conveyor belt. In addition, the conveyor moves an immense volume of water—more than 100 times the flow of the Amazon River. The conveyor belt is also a vital component of the global ocean nutrient and carbon dioxide cycles. Warm surface waters are depleted of nutrients and carbon dioxide, but they are enriched again as they travel through the conveyor belt as deep or bottom layers. The base of the world's food chain depends on the cool, nutrient-rich waters that support the growth of algae and seaweed.
The global average residence time of a water molecule in the ocean is about 3,200 years. By comparison the average residence time in the atmosphere is about nine days. If it is frozen in the Antarctic or drawn into deep groundwater it can be sequestered for ten thousand years.