Nuclear safety and security
Nuclear safety is defined by the International Atomic Energy Agency as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards". The IAEA defines nuclear security as "The prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear materials, other radioactive substances or their associated facilities".
This covers nuclear power plants and all other nuclear facilities, the transportation of nuclear materials, and the use and storage of nuclear materials for medical, power, industry, and military uses.
The nuclear power industry has improved the safety and performance of reactors, and has proposed new and safer reactor designs. However, a perfect safety cannot be guaranteed. Potential sources of problems include human errors and external events that have a greater impact than anticipated: the designers of reactors at Fukushima in Japan did not anticipate that a tsunami generated by an earthquake would disable the backup systems which were supposed to stabilize the reactor after the earthquake. Catastrophic scenarios involving terrorist attacks, war, insider sabotage, and cyberattacks are also conceivable.
Nuclear weapon safety, as well as the safety of military research involving nuclear materials, is generally handled by agencies different from those that oversee civilian safety, for various reasons, including secrecy. There are ongoing concerns about terrorist groups acquiring nuclear bomb-making material.
Overview of nuclear processes and safety issues
, nuclear safety considerations occur in a number of situations, including:With the exception of thermonuclear weapons and experimental fusion research, all safety issues specific to nuclear power stems from the need to limit the biological uptake of committed dose, and external radiation dose due to radioactive contamination.
Nuclear safety therefore covers at minimum:
- Extraction, transportation, storage, processing, and disposal of fissionable materials
- Safety of nuclear power generators
- Control and safe management of nuclear weapons, nuclear material capable of use as a weapon, and other radioactive materials
- Safe handling, accountability and use in industrial, medical and research contexts
- Disposal of nuclear waste
- Limitations on exposure to radiation
Responsible agencies
International
Internationally the International Atomic Energy Agency "works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies." Some scientists say that the 2011 Japanese nuclear accidents have revealed that the nuclear industry lacks sufficient oversight, leading to renewed calls to redefine the mandate of the IAEA so that it can better police nuclear power plants worldwide.The IAEA Convention on Nuclear Safety was adopted in Vienna on 17 June 1994 and entered into force on 24 October 1996. The objectives of the convention are to achieve and maintain a high level of nuclear safety worldwide, to establish and maintain effective defences in nuclear installations against potential radiological hazards, and to prevent accidents having radiological consequences.
The convention was drawn up in the aftermath of the Three Mile Island and Chernobyl accidents at a series of expert level meetings from 1992 to 1994, and was the result of considerable work by States, including their national regulatory and nuclear safety authorities, and the International Atomic Energy Agency, which serves as the Secretariat for the convention.
The obligations of the Contracting Parties are based to a large extent on the application of the safety principles for nuclear installations contained in the IAEA document Safety Fundamentals ‘The Safety of Nuclear Installations’. These obligations cover the legislative and regulatory framework, the regulatory body, and technical safety obligations related to, for instance, siting, design, construction, operation, the availability of adequate financial and human resources, the assessment and verification of safety, quality assurance and emergency preparedness.
The convention was amended in 2014 by the Vienna Declaration on Nuclear Safety. This resulted in the following principles:
1. New nuclear power plants are to be designed, sited, and constructed, consistent with the objective of preventing accidents in the commissioning and operation and, should an accident occur, mitigating possible releases of radionuclides causing long-term off site contamination and avoiding early radioactive releases or radioactive releases large enough to require long-term protective measures and actions.
2. Comprehensive and systematic safety assessments are to be carried out periodically and regularly for existing installations throughout their lifetime in order to identify safety improvements that are oriented to meet the above objective. Reasonably practicable or achievable safety improvements are to be implemented in a timely manner.
3. National requirements and regulations for addressing this objective throughout the lifetime of nuclear power plants are to take into account the relevant IAEA Safety Standards and, as appropriate, other good practices as identified inter alia in the Review Meetings of the CNS.
There are several problems with the IAEA, says Najmedin Meshkati of University of Southern California, writing in 2011:
"It recommends safety standards, but member states are not required to comply; it promotes nuclear energy, but it also monitors nuclear use; it is the sole global organization overseeing the nuclear energy industry, yet it is also weighed down by checking compliance with the Nuclear Non-Proliferation Treaty ".
National
Many nations utilizing nuclear power have specialist institutions overseeing and regulating nuclear safety. Civilian nuclear safety in the U.S. is regulated by the Nuclear Regulatory Commission. However, critics of the nuclear industry complain that the regulatory bodies are too intertwined with the industries themselves to be effective. The book The Doomsday Machine for example, offers a series of examples of national regulators, as they put it 'not regulating, just waving' to argue that, in Japan, for example, "regulators and the regulated have long been friends, working together to offset the doubts of a public brought up on the horror of the nuclear bombs". Other examples offered include:- in China, where Kang Rixin, former general manager of the state-owned China National Nuclear Corporation, was sentenced to life in jail in 2010 for accepting bribes, a verdict raising questions about the quality of his work on the safety and trustworthiness of China's nuclear reactors.
- in India, where the nuclear regulator reports to the national Atomic Energy Commission, which champions the building of nuclear power plants there and the chairman of the Atomic Energy Regulatory Board, S. S. Bajaj, was previously a senior executive at the Nuclear Power Corporation of India, the company he is now helping to regulate.
- in Japan, where the regulator reports to the Ministry of Economy, Trade and Industry, which overtly seeks to promote the nuclear industry and ministry posts and top jobs in the nuclear business are passed among the same small circle of experts.
The safety of nuclear plants and materials controlled by the U.S. government for research, weapons production, and those powering naval vessels is not governed by the NRC. In the UK nuclear safety is regulated by the Office for Nuclear Regulation and the Defence Nuclear Safety Regulator. The Australian Radiation Protection and Nuclear Safety Agency is the Federal Government body that monitors and identifies solar radiation and nuclear radiation risks in Australia. It is the main body dealing with ionizing and non-ionizing radiation and publishes material regarding radiation protection.
Other agencies include:
- Autorité de sûreté nucléaire
- Canadian Nuclear Safety Commission
- Radiological Protection Institute of Ireland
- Federal Atomic Energy Agency in Russia
- Kernfysische dienst,
- Pakistan Nuclear Regulatory Authority
- Bundesamt für Strahlenschutz,
- Atomic Energy Regulatory Board
Nuclear power plant safety and security
Complexity
Nuclear power plants are some of the most sophisticated and complex energy systems ever designed. Any complex system, no matter how well it is designed and engineered, cannot be deemed failure-proof. Veteran journalist and author Stephanie Cooke has argued:
The reactors themselves were enormously complex machines with an incalculable number of things that could go wrong. When that happened at Three Mile Island in 1979, another fault line in the nuclear world was exposed. One malfunction led to another, and then to a series of others, until the core of the reactor itself began to melt, and even the world's most highly trained nuclear engineers did not know how to respond. The accident revealed serious deficiencies in a system that was meant to protect public health and safety.
The 1979 Three Mile Island accident inspired Perrow's book Normal Accidents, where a nuclear accident occurs, resulting from an unanticipated interaction of multiple failures in a complex system. TMI was an example of a normal accident because it was "unexpected, incomprehensible, uncontrollable and unavoidable".
Perrow concluded that the failure at Three Mile Island was a consequence of the system's immense complexity. Such modern high-risk systems, he realized, were prone to failures however well they were managed. It was inevitable that they would eventually suffer what he termed a 'normal accident'. Therefore, he suggested, we might do better to contemplate a radical redesign, or if that was not possible, to abandon such technology entirely.
A fundamental issue contributing to a nuclear power system's complexity is its extremely long lifetime. The timeframe from the start of construction of a commercial nuclear power station through the safe disposal of its last radioactive waste, may be 100 to 150 years.