Nutrition


Nutrition is the biochemical and physiological process by which an organism uses food and water to support its life. The intake of these substances provides organisms with nutrients which can be metabolized to create energy and chemical structures; too much or too little of an essential nutrient can cause malnutrition. Nutritional science, the study of nutrition as a hard science, typically emphasizes human nutrition.
The type of organism determines what nutrients it needs and how it obtains them. Organisms obtain nutrients by consuming organic matter, consuming inorganic matter, absorbing light, or some combination of these. Some can produce nutrients internally by consuming basic elements, while others must consume other organisms to obtain pre-existing nutrients. All forms of life require carbon, energy, and water as well as various other molecules. Animals require complex nutrients such as carbohydrates, lipids, and proteins, obtaining them by consuming other organisms. Humans have developed agriculture and cooking to replace foraging and advance human nutrition. Plants acquire nutrients through the soil and the atmosphere. Fungi absorb nutrients around them by breaking them down and absorbing them through the mycelium.

History

Scientific analysis of food and nutrients began during the chemical revolution in the late 18th century. Chemists in the 18th and 19th centuries experimented with different elements and food sources to develop theories of nutrition. Modern nutrition science began in the 1910s as individual micronutrients began to be identified. The first vitamin to be chemically identified was thiamine in 1926, and vitamin C was identified as a protection against scurvy in 1932. The role of vitamins in nutrition was studied in the following decades. The first recommended dietary allowances for humans were developed to address fears of disease caused by food deficiencies during the Great Depression and the Second World War. Due to its importance in human health, the study of nutrition has heavily emphasized human nutrition and agriculture, while ecology is a secondary concern.

Nutrients

Nutrients are substances that provide energy and physical components to the organism, allowing it to survive, grow, and reproduce. Nutrients can be basic elements or complex macromolecules. Approximately 30 elements are found in organic matter, with nitrogen, carbon, and phosphorus being the most important. Macronutrients are the primary substances required by an organism, and micronutrients are substances required by an organism in trace amounts. Organic micronutrients are classified as vitamins, and inorganic micronutrients are classified as minerals. Over-nutrition of macronutrients is a major cause of obesity and increases the risk of developing various non-communicable diseases, including type 2 diabetes, stroke, hypertension, coronary heart disease, osteoporosis, and some forms of cancer. Nutrients can also be classified as essential or nonessential, with essential meaning the body cannot synthesize the nutrient on its own.
Nutrients are absorbed by the cells and used in metabolic biochemical reactions. These include fueling reactions that create precursor metabolites and energy, biosynthetic reactions that convert precursor metabolites into building block molecules, polymerizations that combine these molecules into macromolecule polymers, and assembly reactions that use these polymers to construct cellular structures.

Nutritional groups

Organisms can be classified by how they obtain carbon and energy. Heterotrophs are organisms that obtain nutrients by consuming the carbon of other organisms, while autotrophs are organisms that produce their own nutrients from the carbon of inorganic substances like carbon dioxide. Mixotrophs are organisms that can be heterotrophs and autotrophs, including some plankton and carnivorous plants. Phototrophs obtain energy from light, while chemotrophs obtain energy by consuming chemical energy from matter. Organotrophs consume other organisms to obtain electrons, while lithotrophs obtain electrons from inorganic substances, such as water, hydrogen sulfide, dihydrogen, iron, sulfur, or ammonium. Prototrophs can create essential nutrients from other compounds, while auxotrophs must consume preexisting nutrients.

Diet

In nutrition, the diet of an organism is the sum of the foods it eats. A healthy diet improves the physical and mental health of an organism. This requires ingestion and absorption of vitamins, minerals, essential amino acids from protein and essential fatty acids from fat-containing food. Carbohydrates, protein and fat play major roles in ensuring the quality of life, health and longevity of the organism. Some cultures and religions have restrictions on what is acceptable for their diet.

Nutrient cycle

A nutrient cycle is a biogeochemical cycle involving the movement of inorganic matter through a combination of soil, organisms, air or water, where they are exchanged in organic matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, sulfur cycle, nitrogen cycle, water cycle, phosphorus cycle, and oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.
Biogeochemical cycles that are performed by living organisms and natural processes are water, carbon, nitrogen, phosphorus, and sulfur cycles. Nutrient cycles allow these essential elements to return to the environment after being absorbed or consumed. Without proper nutrient cycling, there would be a risk of change in oxygen levels, climate, and ecosystem function.

Foraging

Foraging is the process of seeking out nutrients in the environment. It may also be defined to include the subsequent use of the resources. Some organisms, such as animals and bacteria, can navigate to find nutrients, while others, such as plants and fungi, extend outward to find nutrients. Foraging may be random, in which the organism seeks nutrients without method, or it may be systematic, in which the organism can go directly to a food source. Organisms are able to detect nutrients through taste or other forms of nutrient sensing, allowing them to regulate nutrient intake. Optimal foraging theory is a model that explains foraging behavior as a cost–benefit analysis in which an animal must maximize the gain of nutrients while minimizing the amount of time and energy spent foraging. It was created to analyze the foraging habits of animals, but it can also be extended to other organisms. Some organisms are specialists that are adapted to forage for a single food source, while others are generalists that can consume a variety of food sources.

Nutrient deficiency

Nutrient deficiencies, known as malnutrition, occur when an organism does not have the nutrients that it needs. A deficiency is not the same as a nutrient inadequacy which occurs when the intake of nutrients is above the level of deficiency, but below the recommended dietary level. This may lead to hidden symptoms of nutrient deficiency that are difficult to identify. Nutrient deficiency may be caused by a sudden decrease in nutrient intake or by an inability to absorb essential nutrients. Not only is malnutrition the result of a lack of necessary nutrients, but it can also be a result of other illnesses and health conditions. When this occurs, an organism will adapt by reducing energy consumption and expenditure to prolong the use of stored nutrients. It will use stored energy reserves until they are depleted.
A balanced diet includes appropriate amounts of all essential and non-essential nutrients. These can vary by age, weight, sex, physical activity levels, and more. A lack of just one essential nutrient can cause bodily harm, just as an overabundance can cause toxicity. The Daily Reference Values keep the majority of people from nutrient deficiencies. DRVs are not recommendations but a combination of nutrient references to educate professionals and policymakers on what the maximum and minimum nutrient intakes are for the average person. Food labels also use DRVs as a reference to create safe nutritional guidelines for the average healthy person.

In organisms

Animal

Animals are heterotrophs that consume other organisms to obtain nutrients. Herbivores are animals that eat plants, carnivores are animals that eat other animals, and omnivores are animals that eat both plants and other animals. Many herbivores rely on bacterial fermentation to create digestible nutrients from indigestible plant cellulose, while obligate carnivores must eat animal meats to obtain certain vitamins or nutrients their bodies cannot otherwise synthesize. Animals generally have a higher requirement of energy in comparison to plants. The macronutrients essential to animal life are carbohydrates, amino acids, and fatty acids.
All macronutrients except water are required by the body for energy, however, this is not their sole physiological function. The energy provided by macronutrients in food is measured in kilocalories, usually called Calories, where 1 Calorie is the amount of energy required to raise 1 kilogram of water by 1 degree Celsius.
Carbohydrates are molecules that store significant amounts of energy. Animals digest and metabolize carbohydrates to obtain this energy. Carbohydrates are typically synthesized by plants during metabolism, and animals have to obtain most carbohydrates from nature, as they have only a limited ability to generate them. They include sugars, oligosaccharides, and polysaccharides. Glucose is the simplest form of carbohydrate. Carbohydrates are broken down to produce glucose and short-chain fatty acids, and they are the most abundant nutrients for herbivorous land animals. Carbohydrates contain 4 calories per gram.
Lipids provide animals with fats and oils. They are not soluble in water, and they can store energy for an extended period of time. They can be obtained from many different plant and animal sources. Most dietary lipids are triglycerides, composed of glycerol and fatty acids. Phospholipids and sterols are found in smaller amounts. An animal's body will reduce the amount of fatty acids it produces as dietary fat intake increases, while it increases the amount of fatty acids it produces as carbohydrate intake increases. Fats contain 9 calories per gram.
Protein consumed by animals is broken down to amino acids, which would be later used to synthesize new proteins. Protein is used to form cellular structures, fluids, and enzymes. Enzymes are essential to most metabolic processes, as well as DNA replication, repair, and transcription. Protein contains 4 calories per gram.
Much of animal behavior is governed by nutrition. Migration patterns and seasonal breeding take place in conjunction with food availability, and courtship displays are used to display an animal's health. Animals develop positive and negative associations with foods that affect their health, and they can instinctively avoid foods that have caused toxic injury or nutritional imbalances through a conditioned food aversion. Some animals, such as rats, do not seek out new types of foods unless they have a nutrient deficiency.