Food fortification
Food fortification is the addition of micronutrients to food products. Food enrichment specifically means adding back nutrients lost during food processing, while fortification includes adding nutrients not naturally present. Food manufacturers and governments have used these practices since the 1920s to help prevent nutrient deficiencies in populations. Common nutrient deficiencies in a region often result from local soil conditions or limitations of staple foods. The addition of micronutrients to staples and condiments can prevent large-scale deficiency diseases in these cases.
Food fortification has been identified as the second strategy of four by the WHO and FAO to begin decreasing the incidence of nutrient deficiencies at the global level. As outlined by the FAO, the most commonly fortified foods are cereals and cereal-based products; milk and dairy products; fats and oils; accessory food items; tea and other beverages; and infant formulas. Undernutrition and nutrient deficiency is estimated globally to cause the deaths of between 3 and 5 million people per year.
Types
Fortification is present in common food items in two different ways: adding back and addition. Flour loses nutritional value due to the way grains are processed; enriched flour has iron, folic acid, niacin, riboflavin, and thiamine added back to it. Conversely, other fortified foods have micronutrients added to them that don't naturally occur in those substances. An example of this is orange juice, which often is sold with added calcium.Food fortification can also be categorized according to the stage of addition:
- Commercial and industrial fortification
- Biofortification
- Home fortification
Rationale
The WHO and FAO, among many other nationally recognized organizations, have recognized that there are over 2 billion people worldwide who have a variety of micronutrient deficiencies. In 1992, 159 countries pledged at the FAO/WHO International Conference on Nutrition to make efforts to help combat these issues of micronutrient deficiencies, highlighting the importance of decreasing the number of those with iodine, vitamin A, and iron deficiencies. A significant statistic that led to these efforts was the discovery that approximately 1 in 3 people worldwide were at risk for either an iodine, vitamin A, or iron deficiency. Although it is recognized that food fortification alone will not combat this deficiency, it is a step towards reducing the prevalence of these deficiencies and their associated health conditions.
In Canada, the Food and Drug Regulations have outlined specific criteria which justify food fortification:
- To replace nutrients which were lost during manufacturing of the product
- To act as a public health intervention
- To ensure the nutritional equivalence of substitute foods
- To ensure the appropriate vitamin and mineral nutrient composition of foods for special dietary purposes.
Around the world
The subsections below describe fortifications in some jurisdictions around the world. A more comprehensive view is given by the online Global Fortification Data Exchange. It indicates which of 197 countries worldwide have mandatory and voluntary food fortification in their datasets and country profiles. The website is maintained by the Food Fortification Initiative, GAIN, Iodine Global Network, and the Micronutrient Forum.Argentina
In Argentina, wheat flour must by law be fortified with iron, thiamine, riboflavin, niacin, and folic acid.Colombia
Wheat flour sold in Colombia must by law be fortified with vitamin B1, vitamin B2, niacin, folic acid and iron.El Salvador, Guatemala, Honduras and Nicaragua
The four countries, also called the C-4, all legally require wheat flour to be fortified with vitamins B1, B2, B3, B9, and iron.Philippines
The Philippine law on food fortification has two components: mandatory and voluntary. The latter has been criticized for covering only low nutritional-value food, namely, junk food, to enable them to be sold in schools.United Kingdom
UK law requires that all flour be fortified with calcium. Wheat flour must also be fortified with iron, thiamine and vitamin B3.United States
In the 1920s, food fortification emerged as a strategy in the United States to address and prevent the lack of micronutrients in the population's diet. Specifically, it was discovered in the 1930s and 1940s, that micronutrient deficiency is often linked to specific diseases and syndromes. Consequently, the Committee on Food and Nutrition suggested that micronutrients be added to flour. In 1980, The Food and Drug Administration put into action its Food Fortification Policy which included six fundamental rules. In addition to establishing safety guidelines of food fortification, this policy aimed to ensure that food fortification was solely for when the supplemental micronutrient had a national deficiency and that the food chosen to provide that nutrient was consumed by enough of the population to make a change. This policy also emphasized the importance of clinical data, a shift from earlier policies which relied on dietary data alone. The 2002 farm bill requires the Administrator of USAID, in consultation with the Secretary of Agriculture, to establish micronutrient fortification programs under P.L. 480 food aid. Section 3013 replaces a pilot program similarly named and authorized in the 1996 farm bill. Under the programs, grains and other commodities made available to countries selected for participation will be fortified with micronutrients.Criticism
In addition to criticism of government-mandated fortification, food companies have been criticized for indiscriminate enrichment of foods for marketing purposes. Food safety worries led to legislation in Denmark in 2004 restricting foods fortified with extra vitamins or minerals. Products banned include: Rice Krispies, Shreddies, Horlicks, Ovaltine, and Marmite.Limited absorption
One factor that limits the benefits of food fortification is that isolated nutrients added back into a processed food that has had many of its nutrients removed, does not always result in the added nutrients being as bioavailable as they would be in the original, whole food. An example is skim milk that has had the fat removed, and then had vitamin A and vitamin D added back. Vitamins A and D are both fat-soluble and non-water-soluble, so a person consuming skim milk without fats may not be able to absorb as much of these vitamins as one would be able to absorb from drinking whole milk. On the other hand, the nutrient added as a fortificant may have a higher bioavailability than from foods, which is the case with folic acid used to increase folate intakes.Phytochemicals such as phytic acid in cereal grains can also impact nutrient absorption, limiting the bioavailability of intrinsic and additional nutrients, and reducing the effectiveness of fortification programs.
Different forms of micronutrients
There is a concern that micronutrients are legally defined in such a way that does not distinguish between different forms, and that fortified foods often have nutrients in a balance that would not occur naturally. For example, in the U.S., food is fortified with folic acid, which is one of the many naturally occurring forms of folate, and which only contributes a minor amount to the folates occurring in natural foods. In many cases, such as with folate, it is an open question of whether or not there are any benefits or risks to consuming folic acid in this form.In many cases, the micronutrients added to foods in fortification are synthetic.
Certain forms of micronutrients can be actively toxic in a sufficiently high dose, even if other forms are safe at the same or much higher doses. There are examples of such toxicity in both synthetic and naturally occurring forms of vitamins. Retinol, the active form of Vitamin A, is toxic in a much lower dose than other forms, such as beta carotene. Menadione, a phased-out synthetic form of Vitamin K, is also known to be toxic.
Examples of fortification in foods
Many foods and beverages worldwide have been fortified, whether a voluntary action by the product developers or by law. Although some may view these additions as strategic marketing schemes to sell their product, there is a lot of work that must go into a product before simply fortifying it. To fortify a product, it must first be proven that the addition of this vitamin or mineral is beneficial to health, safe, and an effective method of delivery. The addition must also abide by all food and labeling regulations and support nutritional rationale. From a food developer's point of view, they also need to consider the costs associated with this new product and whether there will be a market to support the change.The Food Fortification Initiative lists all countries in the world that conduct fortification programs, and within each country, what nutrients are added to which foods, and whether those programs are voluntary or mandatory. Vitamin fortification programs exist in one or more countries for folate, niacin, riboflavin, thiamine, vitamin A, vitamin B6, vitamin B12, vitamin D and vitamin E. Mineral fortification programs include calcium, fluoride, iodine, iron, selenium and zinc. As of December 21, 2018, 81 countries required food fortification with one or more vitamins. The most commonly fortified vitamin – as used in 62 countries – is folate; the most commonly fortified food is wheat flour. Examples of foods and beverages that have been fortified: