Foraging
Foraging is searching for wild food resources. It affects an animal's fitness because it plays an important role in an animal's ability to survive and reproduce. Foraging theory is a branch of behavioral ecology that studies the foraging behavior of animals in response to the environment where the animal lives.
Behavioral ecologists use economic models and categories to understand foraging; many of these models are a type of optimal model. Thus foraging theory is discussed in terms of optimizing a payoff from a foraging decision. The payoff for many of these models is the amount of energy an animal receives per unit time, more specifically, the highest ratio of energetic gain to cost while foraging. Foraging theory predicts that the decisions that maximize energy per unit time and thus deliver the highest payoff will be selected for and persist. Key words used to describe foraging behavior include resources, the elements necessary for survival and reproduction which have a limited supply, predator, any organism that consumes others, prey, an organism that is eaten in part or whole by another, and patches, concentrations of resources.
Behavioral ecologists first tackled this topic in the 1960s and 1970s. Their goal was to quantify and formalize a set of models to test their null hypothesis that animals forage randomly. Important contributions to foraging theory have been made by:
- Eric Charnov, who developed the marginal value theorem to predict the behavior of foragers using patches;
- Sir John Krebs, with work on the optimal diet model in relation to tits and chickadees;
- John Goss-Custard, who first tested the optimal diet model against behavior in the field, using redshank, and then proceeded to an extensive study of foraging in the common pied oystercatcher.
Factors influencing foraging behavior
Learning
is defined as an adaptive change or modification of a behavior based on a previous experience. Since an animal's environment is constantly changing, the ability to adjust foraging behavior is essential for maximization of fitness. Studies in social insects have shown that there is a significant correlation between learning and foraging performance.In nonhuman primates, young individuals learn foraging behavior from their peers and elders by watching other group members forage and by copying their behavior. Observing and learning from other members of the group ensure that the younger members of the group learn what is safe to eat and become proficient foragers.
One measure of learning is 'foraging innovation'—an animal consuming new food, or using a new foraging technique in response to their dynamic living environment. Foraging innovation is considered learning because it involves behavioral plasticity on the animal's part. The animal recognizes the need to come up with a new foraging strategy and introduce something it has never used before to maximize his or her fitness. Forebrain size has been associated with learning behavior. Animals with larger brain sizes are expected to learn better. A higher ability to innovate has been linked to larger forebrain sizes in North American and British Isle birds according to Lefebvre et al.. In this study, bird orders that contained individuals with larger forebrain sizes displayed a higher amount of foraging innovation. Examples of innovations recorded in birds include following tractors and eating frogs or other insects killed by it and using swaying trees to catch their prey.
Another measure of learning is spatio-temporal learning, which refers to an individual's ability to associate the time of an event with the place of that event. This type of learning has been documented in the foraging behaviors of individuals of the stingless bee species Trigona fulviventris. Studies showed that T. fulviventris individuals learned the locations and times of feeding events, and arrived to those locations up to 30 minutes before the feeding event in anticipation of the food reward.
Genetics
Foraging behavior can also be influenced by genetics. The genes associated with foraging behavior have been widely studied in honeybees with reference to the following; onset of foraging behavior, task division between foragers and workers, and bias in foraging for either pollen or nectar. Honey bee foraging activity occurs both inside and outside the hive for either pollen or nectar. Similar behavior is seen in many social wasps, such as the species Apoica flavissima. Studies using quantitative trait loci mapping have associated the following loci with the matched functions; Pln-1 and Pln-4 with onset of foraging age, Pln-1 and 2 with the size of the pollen loads collected by workers, and Pln-2 and pln-3 were shown to influence the sugar concentration of the nectar collected.Some behaviors are more dominant than others. In a study using fruit fly larvae, there were two types of foraging strategies: rovers and sitters. Rovers used the strategy of moving across multiple patches in search for food, while sitters remained in one patch with no inclination to go searching. Both of these strategies are polymorphic traits that naturally occur within the larval stages of fruit flies. The gene responsible for major effects on foraging behavior in Drosophila melanogaster larvae is the chaser gene. During the study, homozygous strains were produced by crossing the rovers with rovers and sitters with sitters. Using the method of hybridization - crossing rovers with sitters - all of the offspring displayed the rover foraging behavior, thus demonstrating that it is an allele of complete dominance.