Mineral
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.
The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic or chemically organic compounds. Moreover, living organisms often synthesize inorganic minerals that also occur in rocks.
The concept of mineral is distinct from rock, which is any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral or may be an aggregate of two or more different types of minerals, spacially segregated into distinct phases.
Some natural solid substances without a definite crystalline structure, such as opal or obsidian, are more properly called mineraloids. If a chemical compound occurs naturally with different crystal structures, each structure is considered a different mineral species. Thus, for example, quartz and stishovite are two different minerals consisting of the same compound, silicon dioxide.
The International Mineralogical Association is the generally recognized standard body for the definition and nomenclature of mineral species., the IMA recognizes 6,145 official mineral species.
The chemical composition of a named mineral species may vary somewhat because the inclusion of small amounts of impurities. Specific varieties of a species sometimes have conventional or official names of their own. For example, amethyst is a purple variety of the mineral species quartz. Some mineral species can have variable proportions of two or more chemical elements that occupy equivalent positions in the mineral's structure; for example, the formula of mackinawite is given as, meaning, where x is a variable number between 0 and 9. Sometimes a mineral with variable composition is split into separate species, more or less arbitrarily, forming a mineral group; that is the case of the silicates, the olivine group.
Besides the essential chemical composition and crystal structure, the description of a mineral species usually includes its common physical properties such as habit, hardness, lustre, diaphaneity, colour, streak, tenacity, cleavage, fracture, system, zoning, parting, specific gravity, magnetism, fluorescence, radioactivity, as well as its taste or smell and its reaction to acid.
Minerals are classified by key chemical constituents; the two dominant systems are the Dana classification and the Strunz classification. Silicate minerals comprise approximately 90% of the Earth's crust. Other important mineral groups include the native elements and compounds namely sulfides, oxides, halides, carbonates, sulfates, silicates, molybdates and phosphates.
Definitions
International Mineralogical Association
The International Mineralogical Association has established the following requirements for a substance to be considered a distinct mineral:- It must be a naturally occurring substance formed by natural geological processes, on Earth or other extraterrestrial bodies. This excludes compounds directly and exclusively generated by human activities or in living beings, such as tungsten carbide, urinary calculi, calcium oxalate crystals in plant tissues, and seashells. However, substances with such origins may qualify if geological processes were involved in their genesis. Hypothetical substances are also excluded, even if they are predicted to occur in inaccessible natural environments like the Earth's core or other planets.
- It must be a solid substance in its natural occurrence. A major exception to this rule is native mercury: it is still classified as a mineral by the IMA, even though crystallizes only below −39 °C, because it was included before the current rules were established. Water and carbon dioxide are not considered minerals, even though they are often found as inclusions in other minerals; but water ice is considered a mineral.
- It must have a well-defined crystallographic structure; or, more generally, an ordered atomic arrangement. This property implies several macroscopic physical properties, such as crystal form, hardness, and cleavage. It excludes ozokerite, limonite, obsidian and many other amorphous materials that occur in geologic contexts.
- It must have a fairly well defined chemical composition. However, certain crystalline substances with a fixed structure but variable composition may be considered single mineral species. A common class of examples are solid solutions such as mackinawite, 9S8, which is mostly a ferrous sulfide with a significant fraction of iron atoms replaced by nickel atoms. Other examples include layered crystals with variable layer stacking, or crystals that differ only in the regular arrangement of vacancies and substitutions. On the other hand, some substances that have a continuous series of compositions, may be arbitrarily split into several minerals. The typical example is the olivine group 2SiO4, whose magnesium-rich and iron-rich end-members are considered separate minerals.
The IMA is also reluctant to accept minerals that occur naturally only in the form of nanoparticles a few hundred atoms across, but has not defined a minimum crystal size.
Some authors require the material to be a stable or metastable solid at room temperature. However, the IMA only requires that the substance be stable enough for its structure and composition to be well-determined. For example, it recognizes meridianiite as a mineral, even though it is formed and stable only below 2 °C.
, 6,145 mineral species are approved by the IMA. They are most commonly named after a person, followed by discovery location; names based on chemical composition or physical properties are the two other major groups of mineral name etymologies. Most names end in "-ite"; the exceptions are usually names that were well-established before the organization of mineralogy as a discipline, for example galena and diamond.
Biogenic minerals
A topic of contention among geologists and mineralogists has been the IMA's decision to exclude biogenic crystalline substances. For example, Lowenstam stated that "organisms are capable of forming a diverse array of minerals, some of which cannot be formed inorganically in the biosphere."Skinner views all solids as potential minerals and includes biominerals in the mineral kingdom, which are those that are created by the metabolic activities of organisms. Skinner expanded the previous definition of a mineral to classify "element or compound, amorphous or crystalline, formed through biogeochemical processes," as a mineral.
Recent advances in high-resolution genetics and X-ray absorption spectroscopy are providing revelations on the biogeochemical relations between microorganisms and minerals that may shed new light on this question. For example, the IMA-commissioned "Working Group on Environmental Mineralogy and Geochemistry " deals with minerals in the hydrosphere, atmosphere, and biosphere. The group's scope includes mineral-forming microorganisms, which exist on nearly every rock, soil, and particle surface spanning the globe to depths of at least 1600 metres below the sea floor and 70 kilometres into the stratosphere.
Biogeochemical cycles have contributed to the formation of minerals for billions of years. Microorganisms can precipitate metals from solution, contributing to the formation of ore deposits. They can also catalyze the dissolution of minerals.
Prior to the International Mineralogical Association's listing, over 60 biominerals had been discovered, named, and published. These minerals are considered minerals proper according to Skinner's definition. These biominerals are not listed in the International Mineral Association official list of mineral names; however, many of these biomineral representatives are distributed amongst the 78 mineral classes listed in the Dana classification scheme.
Skinner's definition of a mineral takes this matter into account by stating that a mineral can be crystalline or amorphous. Although biominerals are not the most common form of minerals, they help to define the limits of what constitutes a mineral proper. Nickel's formal definition explicitly mentioned crystallinity as a key to defining a substance as a mineral. A 2011 article defined icosahedrite, an aluminium-iron-copper alloy, as a mineral; named for its unique natural icosahedral symmetry, it is a quasicrystal. Unlike a true crystal, quasicrystals are ordered but not periodic.
Mineral assemblage
A mineral assemblage is defined by Mindat.org as "Any set of minerals in a rock, whether in chemical equilibrium| equilibrium or not", while Encyclopaedia Britannica says "The term assemblage is frequently applied to all minerals included in a rock but more appropriately should be used for those minerals that are in equilibrium ".The term is often prefixed by other terms that describe its formation.
Rocks, ores, and gems
A rock is an aggregate of one or more minerals or mineraloids. Some rocks, such as limestone or quartzite, are composed primarily of one mineral – calcite or aragonite in the case of limestone, and quartz in the latter case. Other rocks can be defined by relative abundances of key minerals; a granite is defined by proportions of quartz, alkali feldspar, and plagioclase feldspar. The other minerals in the rock are termed accessory minerals, and do not greatly affect the bulk composition of the rock. Rocks can also be composed entirely of non-mineral material; coal is a sedimentary rock composed primarily of organically derived carbon.In rocks, some mineral species and groups are much more abundant than others; these are termed the rock-forming minerals. The major examples of these are quartz, the feldspars, the micas, the amphiboles, the pyroxenes, the olivines, and calcite; except for the last one, all of these minerals are silicates. Overall, around 150 minerals are considered particularly important, whether in terms of their abundance or aesthetic value in terms of collecting.
Commercially valuable minerals and rocks, other than gemstones, metal ores, or mineral fuels, are referred to as industrial minerals. For example, muscovite, a white mica, can be used for windows, as a filler, or as an insulator.
Ores are minerals that have a high concentration of a certain element, typically a metal. Examples are cinnabar, an ore of mercury; sphalerite, an ore of zinc; cassiterite, an ore of tin; and colemanite, an ore of boron.
Gems are minerals with an ornamental value, and are distinguished from non-gems by their beauty, durability, and usually, rarity. There are about 20 mineral species that qualify as gem minerals, which constitute about 35 of the most common gemstones. Gem minerals are often present in several varieties, and so one mineral can account for several different gemstones; for example, ruby and sapphire are both corundum, Al2O3.