Metalloid
The word metalloid comes from the Latin metallum and the Greek oeidḗs. However, there is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature.
The six commonly recognised metalloids are boron, silicon, germanium, arsenic, antimony and tellurium. Five elements are less frequently so classified: carbon, aluminium, selenium, polonium and astatine. On a standard periodic table, all eleven elements are in a diagonal region of the p-block extending from boron at the upper left to astatine at lower right. Some periodic tables include a dividing line between metals and nonmetals, and the metalloids may be found close to this line.
Typical metalloids have a metallic appearance, may be brittle and are only fair conductors of electricity. They can form alloys with metals, and many of their other physical properties and chemical properties are intermediate between those of metallic and nonmetallic elements. They and their compounds are used in alloys, biological agents, catalysts, flame retardants, glasses, optical storage and optoelectronics, pyrotechnics, semiconductors, and electronics.
The term metalloid originally referred to nonmetals. Its more recent meaning, as a category of elements with intermediate or hybrid properties, became widespread in 1940–1960. Metalloids are sometimes called semimetals, a practice that has been discouraged, as the term semimetal has a more common usage as a specific kind of electronic band structure of a substance. In this context, only arsenic and antimony are semimetals, and commonly recognised as metalloids.
Definitions
Judgment-based
A metalloid is an element that possesses a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals, and which is therefore hard to classify as either a metal or a nonmetal. This is a generic definition that draws on metalloid attributes consistently cited in the literature. Difficulty of categorisation is a key attribute. Most elements have a mixture of metallic and nonmetallic properties, and can be classified according to which set of properties is more pronounced. Only the elements at or near the margins, lacking a sufficiently clear preponderance of either metallic or nonmetallic properties, are classified as metalloids.Boron, silicon, germanium, arsenic, antimony, and tellurium are commonly recognised as metalloids. Depending on the author, one or more from selenium, polonium, or astatine are sometimes added to the list. Boron sometimes is excluded, by itself, or with silicon. Sometimes tellurium is not regarded as a metalloid. The inclusion of antimony, polonium, and astatine as metalloids has been questioned.
Other elements are occasionally classified as metalloids. These elements include hydrogen, beryllium, nitrogen, phosphorus, sulfur, zinc, gallium, tin, iodine, lead, bismuth, and radon. The term metalloid has also been used for elements that exhibit metallic lustre and electrical conductivity, and that are amphoteric, such as arsenic, antimony, vanadium, chromium, molybdenum, tungsten, tin, lead, and aluminium. The p-block metals, and nonmetals that can form alloys with metals or modify their properties have also occasionally been considered as metalloids.
Criteria-based
No widely accepted definition of a metalloid exists, nor any division of the periodic table into metals, metalloids, and nonmetals; Hawkes questioned the feasibility of establishing a specific definition, noting that anomalies can be found in several attempted constructs. Classifying an element as a metalloid has been described by Sharp as "arbitrary".The number and identities of metalloids depend on what classification criteria are used. Emsley recognised four metalloids ; James et al. listed twelve. On average, seven elements are included in such lists; individual classification arrangements tend to share common ground and vary in the ill-defined margins.
A single quantitative criterion such as electronegativity is commonly used, metalloids having electronegativity values from 1.8 or 1.9 to 2.2. Further examples include packing efficiency and the Goldhammer–Herzfeld criterion ratio. The commonly recognised metalloids have packing efficiencies of between 34% and 41%. The Goldhammer–Herzfeld ratio, roughly equal to the cube of the atomic radius divided by the molar volume, is a simple measure of how metallic an element is, the recognised metalloids having ratios from around 0.85 to 1.1 and averaging 1.0.
Other authors have relied on, for example, atomic conductance or bulk coordination number.
Jones, writing on the role of classification in science, observed that " are usually defined by more than two attributes". Masterton and Slowinski used three criteria to describe the six elements commonly recognised as metalloids: metalloids have ionization energies around 200 kcal/mol and electronegativity values close to 2.0. They also said that metalloids are typically semiconductors, though antimony and arsenic have electrical conductivities approaching those of metals. Selenium and polonium are suspected as not in this scheme, while astatine's status is uncertain.
In this context, Vernon proposed that a metalloid is a chemical element that, in its standard state, has the electronic band structure of a semiconductor or a semimetal; and an intermediate first ionization potential ""; and an intermediate electronegativity.
Periodic table territory
Location
Metalloids lie on either side of the dividing line between metals and nonmetals. This can be found, in varying configurations, on some periodic tables. Elements to the lower left of the line generally display increasing metallic behaviour; elements to the upper right display increasing nonmetallic behaviour. When presented as a regular stairstep, elements with the highest critical temperature for their groups lie just below the line.The diagonal positioning of the metalloids represents an exception to the observation that elements with similar properties tend to occur in vertical groups. A related effect can be seen in other diagonal similarities between some elements and their lower right neighbours, specifically lithium-magnesium, beryllium-aluminium, and boron-silicon. Rayner-Canham has argued that these similarities extend to carbon-phosphorus, nitrogen-sulfur, and into three d-block series.
This exception arises due to competing horizontal and vertical trends in the nuclear charge. Going along a period, the nuclear charge increases with atomic number as do the number of electrons. The additional pull on outer electrons as nuclear charge increases generally outweighs the screening effect of having more electrons. With some irregularities, atoms therefore become smaller, ionization energy increases, and there is a gradual change in character, across a period, from strongly metallic, to weakly metallic, to weakly nonmetallic, to strongly nonmetallic elements. Going down a main group, the effect of increasing nuclear charge is generally outweighed by the effect of additional electrons being further away from the nucleus. Atoms generally become larger, ionization energy falls, and metallic character increases. The net effect is that the location of the metal–nonmetal transition zone shifts to the right in going down a group, and analogous diagonal similarities are seen elsewhere in the periodic table, as noted.
Alternative treatments
Elements bordering the metal–nonmetal dividing line are not always classified as metalloids, noting a binary classification can facilitate the establishment of rules for determining bond types between metals and nonmetals. In such cases, the authors concerned focus on one or more attributes of interest to make their classification decisions, rather than being concerned about the marginal nature of the elements in question. Their considerations may or not be made explicit and may, at times, seem arbitrary. Metalloids may be grouped with metals; or regarded as nonmetals; or treated as a sub-category of nonmetals. Other authors have suggested classifying some elements as metalloids "emphasizes that properties change gradually rather than abruptly as one moves across or down the periodic table". Some periodic tables distinguish elements that are metalloids and display no formal dividing line between metals and nonmetals. Metalloids are instead shown as occurring in a diagonal band or diffuse region. The key consideration is to explain the context for the taxonomy in use.Properties
Metalloids usually look like metals but behave largely like nonmetals. Physically, they are shiny, brittle solids with intermediate to relatively good electrical conductivity and the electronic band structure of a semimetal or semiconductor. Chemically, they mostly behave as nonmetals, have intermediate ionization energies and electronegativity values, and amphoteric or weakly acidic oxides. Most of their other physical and chemical properties are intermediate in nature.Compared to metals and nonmetals
Characteristic properties of metals, metalloids, and nonmetals are summarized in the table. Physical properties are listed in order of ease of determination; chemical properties run from general to specific, and then to descriptive.| Physical property | Metals | Metalloids | Nonmetals |
| Form | solid; a few liquid at or near room temperature | solid | majority gaseous |
| Appearance | lustrous | lustrous | several colourless; others coloured, or metallic grey to black |
| Plasticity | typically elastic, ductile, malleable | often brittle | often brittle |
| Electrical conductivity | good to high | intermediate to good | poor to good |
| Band structure | metallic | are semiconductors or, if not, exist in semiconducting forms | semiconductor or insulator |
| Chemical property | Metals | Metalloids | Nonmetals |
| General chemical behaviour | metallic | nonmetallic | nonmetallic |
| Ionization energy | relatively low | intermediate ionization energies, usually falling between those of metals and nonmetals | relatively high |
| Electronegativity | usually low | have electronegativity values close to 2 or within the range of 1.9–2.2 | high |
| When mixed with metals | give alloys | can form alloys | ionic or interstitial compounds formed |
| Oxides | lower oxides basic; higher oxides increasingly acidic | amphoteric or weakly acidic | acidic |
The above table reflects the hybrid nature of metalloids. The properties of form, appearance, and behaviour when mixed with metals are more like metals. Elasticity and general chemical behaviour are more like nonmetals. Electrical conductivity, band structure, ionization energy, electronegativity, and oxides are intermediate between the two.