Animal
Animals are multicellular, eukaryotic organisms belonging to the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Animals form a clade, meaning that they arose from a single [|common ancestor]. Over 1.5 million living animal species have been described, of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are as many as 7.77 million animal species on Earth. Animal body lengths range from to. They have complex ecologies and interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology, and the study of animal behaviour is known as ethology.
The animal kingdom is divided into five major clades, namely Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria. Most living animal species belong to the clade Bilateria, a highly proliferative clade whose members have a bilaterally symmetric and significantly cephalised body plan, and the vast majority of bilaterians belong to two large clades: the protostomes, which includes organisms such as arthropods, molluscs, flatworms, annelids and nematodes; and the deuterostomes, which include echinoderms, hemichordates and chordates, the latter of which contains the vertebrates. The much smaller basal phylum Xenacoelomorpha have an uncertain position within Bilateria.
Animals first appeared in the fossil record in the late Cryogenian period and diversified in the subsequent Ediacaran period in what is known as the Avalon explosion. Nearly all modern animal phyla first appeared in the fossil record as marine species during the Cambrian explosion, which began around 539 million years ago, and most classes during the Ordovician radiation 485.4 Mya. Common to all living animals, 6,331 groups of genes have been identified that may have arisen from a single common ancestor that lived about 650 Mya during the Cryogenian period.
Historically, Aristotle divided animals into those with blood and those without. Carl Linnaeus created the first hierarchical biological classification for animals in 1758 with his Systema Naturae, which Jean-Baptiste Lamarck expanded into 14 phyla by 1809. In 1874, Ernst Haeckel divided the animal kingdom into the multicellular Metazoa and the Protozoa, single-celled organisms no longer considered animals. In modern times, the biological classification of animals relies on advanced techniques, such as molecular phylogenetics, which are effective at demonstrating the evolutionary relationships between taxa.
Humans make use of many other animal species for food, for materials, as pets and as working animals for transportation, and services. Dogs, the first domesticated animal, have been used in hunting, in security and in warfare, as have horses, pigeons and birds of prey; while other terrestrial and aquatic animals are hunted for sports, trophies or profits. Non-human animals are also an important cultural element of human evolution, having appeared in cave arts and totems since the earliest times, and are frequently featured in mythology, religion, arts, literature, heraldry, politics, and sports.
Etymology
The word animal comes from the Latin noun of the same meaning, which is itself derived from Latin 'having breath or soul'. The biological definition includes all members of the kingdom Animalia. In colloquial usage, the term animal is often used to refer only to nonhuman animals. The term metazoa is derived from Ancient Greek μετα 'after' and ζῷᾰ 'animals', plural of ζῷον 'animal'. A metazoan is any member of the group Metazoa.Characteristics
Animals have several characteristics that they share with other living things. Animals are eukaryotic, multicellular, and aerobic, as are plants and fungi. Unlike plants and algae, which produce their own food, animals cannot produce their own food, a feature they share with fungi. Animals ingest organic material and digest it internally.Structural features
Animals have structural characteristics that set them apart from all other living things:- cells surrounded by an extracellular matrix composed of
- * collagen and
- * elastic glycoproteins
- motility i.e. able to spontaneously move their bodies during at least part of their life cycle.
- a blastula stage during embryonic development
Development
Animal development is controlled by Hox genes, which signal the times and places to develop structures such as body segments and limbs.During development, the animal extracellular matrix forms a relatively flexible framework upon which cells can move about and be reorganised into specialised tissues and organs, making the formation of complex structures possible, and allowing cells to be differentiated. The extracellular matrix may be calcified, forming structures such as shells, bones, and spicules. In contrast, the cells of other multicellular organisms are held in place by cell walls, and so develop by progressive growth.
Reproduction
Nearly all animals make use of some form of sexual reproduction. They produce haploid gametes by meiosis; the smaller, motile gametes are spermatozoa and the larger, non-motile gametes are ova. These fuse to form zygotes, which develop via mitosis into a hollow sphere, called a blastula. In sponges, blastula larvae swim to a new location, attach to the seabed, and develop into a new sponge. In most other groups, the blastula undergoes more complicated rearrangement. It first invaginates to form a gastrula with a digestive chamber and two separate germ layers, an external ectoderm and an internal endoderm. In most cases, a third germ layer, the mesoderm, also develops between them. These germ layers then differentiate to form tissues and organs.Repeated instances of mating with a close relative during sexual reproduction generally leads to inbreeding depression within a population due to the increased prevalence of harmful recessive traits. Animals have evolved numerous mechanisms for avoiding close inbreeding.
Some animals are capable of asexual reproduction, which often results in a genetic clone of the parent. This may take place through fragmentation; budding, such as in Hydra and other cnidarians; or parthenogenesis, where fertile eggs are produced without mating, such as in aphids.
Ecology
Animals are categorised into ecological groups depending on their trophic levels and how they consume organic material. Such groupings include carnivores, herbivores, omnivores, fungivores, scavengers/detritivores, and parasites. Interactions between animals of each biome form complex food webs within that ecosystem. In carnivorous or omnivorous species, predation is a consumer–resource interaction where the predator feeds on another organism, its prey, who often evolves anti-predator adaptations to avoid being fed upon. Selective pressures imposed on one another lead to an evolutionary arms race between predator and prey, resulting in various antagonistic/competitive coevolutions. Almost all multicellular predators are animals. Some consumers use multiple methods; for example, in parasitoid wasps, the larvae feed on the hosts' living tissues, killing them in the process, but the adults primarily consume nectar from flowers. Other animals may have very specific feeding behaviours, such as hawksbill sea turtles which mainly eat sponges.Most animals rely on biomass and bioenergy produced by plants and phytoplanktons through photosynthesis. Herbivores, as primary consumers, eat the plant material directly to digest and absorb the nutrients, while carnivores and other animals on higher trophic levels indirectly acquire the nutrients by eating the herbivores or other animals that have eaten the herbivores. Animals oxidise carbohydrates, lipids, proteins and other biomolecules in cellular respiration, which allows the animal to grow and to sustain basal metabolism and fuel other biological processes such as locomotion. Some benthic animals living close to hydrothermal vents and cold seeps on the dark sea floor consume organic matter produced through chemosynthesis by archaea and bacteria.
Animals originated in the ocean; all extant animal phyla, except for Micrognathozoa and Onychophora, feature at least some marine species. However, several lineages of arthropods begun to colonise land around the same time as land plants, probably between 510 and 471 million years ago, during the Late Cambrian or Early Ordovician. Vertebrates such as the lobe-finned fish Tiktaalik started to move on to land in the late Devonian, about 375 million years ago. Other notable animal groups that colonized land environments are Mollusca, Platyhelmintha, Annelida, Tardigrada, Onychophora, Rotifera, Nematoda.
Animals occupy virtually all of earth's habitats and microhabitats, with faunas adapted to salt water, hydrothermal vents, fresh water, hot springs, swamps, forests, pastures, deserts, air, and the interiors of other organisms. Animals are however not particularly heat tolerant; very few of them can survive at constant temperatures above or in the most extreme cold deserts of continental Antarctica.
The collective global geomorphic influence of animals on the processes shaping the Earth's surface remains largely understudied, with most studies limited to individual species and well-known exemplars.