Imitation


Imitation is a behavior whereby an individual observes and replicates another's behavior. Imitation is also a form of learning that leads to the "development of traditions, and ultimately our culture. It allows for the transfer of information between individuals and down generations without the need for genetic inheritance." The word imitation can be applied in many contexts, ranging from animal training to politics. The term generally refers to conscious behavior; subconscious imitation is termed mirroring.

Anthropology and social sciences

In anthropology, some theories hold that all cultures imitate ideas from one of a few original cultures or several cultures whose influence overlaps geographically. Evolutionary diffusion theory holds that cultures influence one another, but that similar ideas can be developed in isolation.
Scholars as well as popular authors have argued that the role of imitation in humans is unique among animals. However, this claim has been recently challenged by scientific research which observed social learning and [|imitative abilities in animals].
Psychologist Kenneth Kaye showed that the ability of infants to match the sounds or gestures of an adult depends on an interactive process of turn-taking over many successive trials, in which adults' instinctive behavior plays as great a role as that of the infant. These writers assume that evolution would have selected imitative abilities as fit because those who were good at it had a wider arsenal of learned behavior at their disposal, including tool-making and language.
However, research also suggests that imitative behaviors and other social learning processes are only selected for when outnumbered or accompanied by asocial learning processes: an over-saturation of imitation and imitating individuals leads humans to collectively copy inefficient strategies and evolutionarily maladaptive behaviors, thereby reducing flexibility to new environmental contexts that require adaptation. Research suggests imitative social learning hinders the acquisition of knowledge in novel environments and in situations where asocial learning is faster and more advantageous.
In the mid-20th century, social scientists began to study how and why people imitate ideas. Everett Rogers pioneered innovation diffusion studies, identifying factors in adoption and profiles of adopters of ideas. Imitation mechanisms play a central role in both analytical and empirical models of collective human behavior.

[Neuroscience]

Humans are capable of imitating movements, actions, skills, behaviors, gestures, pantomimes, mimics, vocalizations, sounds, speech, etc. and that we have particular "imitation systems" in the brain is old neurological knowledge dating back to Hugo Karl Liepmann. Liepmann's model 1908 "Das hierarchische Modell der Handlungsplanung" is still valid. On studying the cerebral localization of function, Liepmann postulated that planned or commanded actions were prepared in the parietal lobe of the brain's dominant hemisphere, and also frontally. His most important pioneering work is when extensively studying patients with lesions in these brain areas, he discovered that the patients lost the ability to imitate. He was the one who coined the term "apraxia" and differentiated between ideational and ideomotor apraxia. It is in this basic and wider frame of classical neurological knowledge that the discovery of the mirror neuron has to be seen. Though mirror neurons were first discovered in macaques, their discovery also relates to humans.
Human brain studies using functional magnetic resonance imaging revealed a network of regions in the inferior frontal cortex and inferior parietal cortex which are typically activated during imitation tasks. It has been suggested that these regions contain mirror neurons similar to the mirror neurons recorded in the macaque monkey. However, it is not clear if macaques spontaneously imitate each other in the wild.
Neurologist V. S. Ramachandran argues that the evolution of mirror neurons were important in the human acquisition of complex skills such as language and believes the discovery of mirror neurons to be a most important advance in neuroscience. However, little evidence directly supports the theory that mirror neuron activity is involved in cognitive functions such as empathy or learning by imitation.
Evidence is accumulating that bottlenose dolphins employ imitation to learn hunting and other skills from other dolphins.
Japanese monkeys have been seen to spontaneously begin washing potatoes after seeing humans washing them.

Mirror neuron system

Research has been conducted to locate where in the brain specific parts and neurological systems are activated when humans imitate behaviors and actions of others, discovering a mirror neuron system. This neuron system allows a person to observe and then recreate the actions of others. Mirror neurons are premotor and parietal cells in the macaque brain that fire when the animal performs a goal directed action and when it sees others performing the same action." Evidence suggests that the mirror neuron system also allows people to comprehend and understand the intentions and emotions of others. Problems of the mirror neuron system may be correlated with the social inadequacies of autism. There have been many studies done showing that children with autism, compared with typically-developing children, demonstrate reduced activity in the frontal mirror neuron system area when observing or imitating facial emotional expressions. Of course, the higher the severity of the disease, the lower the activity in the mirror neuron system is.

Animal behavior

Scientists debate whether animals can consciously imitate the unconscious incitement from sentinel animals, whether imitation is uniquely human, or whether humans do a complex version of what other animals do. The current controversy is partly definitional. Thorndike uses "learning to do an act from seeing it done." It has two major shortcomings: first, by using "seeing" it restricts imitation to the visual domain and excludes, e.g., vocal imitation and, second, it would also include mechanisms such as priming, contagious behavior and social facilitation, which most scientist distinguish as separate forms of observational learning. Thorpe suggested defining imitation as "the copying of a novel or otherwise improbable act or utterance, or some act for which there is clearly no instinctive tendency." This definition is favored by many scholars, though questions have been raised how strictly the term "novel" has to be interpreted and how exactly a performed act has to match the demonstration to count as a copy.
Hayes and Hayes used the "do-as-I-do" procedure to demonstrate the imitative abilities of their trained chimpanzee "Viki." Their study was repeatedly criticized for its subjective interpretations of their subjects' responses. Replications of this study found much lower matching degrees between subjects and models. However, imitation research focusing on the copying fidelity got new momentum from a study by Voelkl and Huber. They analyzed the motion trajectories of both model and observer monkeys and found a high matching degree in their movement patterns.
Paralleling these studies, comparative psychologists provided tools or apparatuses that could be handled in different ways. Heyes and co-workers reported evidence for imitation in rats that pushed a lever in the same direction as their models, though later on they withdrew their claims due to methodological problems in their original setup. By trying to design a testing paradigm that is less arbitrary than pushing a lever to the left or to the right, Custance and co-workers introduced the "artificial fruit" paradigm, where a small object could be opened in different ways to retrieve food placed inside—not unlike a hard-shelled fruit. Using this paradigm, scientists reported evidence for imitation in monkeys and apes. There remains a problem with such tool use studies: what animals might learn in such studies need not be the actual behavior patterns that were observed. Instead they might learn about some effects in the environment. This type of observational learning, which focuses on results, not actions, has been dubbed emulation.
In an article written by Carl Zimmer, he looked into a study being done by Derek Lyons, focusing on human evolution, in which he studied a chimpanzee. He first started with showing the chimpanzee how to retrieve food from a box. The chimpanzee soon caught on and did exactly what the scientist just did. They wanted to see if the chimpanzee's brain functioned just like a human brain, so they replicated the experiment using 16 children, following the same procedure; once the children saw how it was done, they followed the same exact steps.

Imitation in animals

Imitation in animals is a study in the field of social learning where learning behavior is observed in animals specifically how animals learn and adapt through imitation. Ethologists can classify imitation in animals by the learning of certain behaviors from conspecifics. More specifically, these behaviors are usually unique to the species and can be complex in nature and can benefit the individual's survival.
Some scientists believe true imitation is only produced by humans, arguing that simple learning though sight is not enough to sustain as a being who can truly imitate. Thorpe defines true imitation as "the copying of a novel or otherwise improbable act or utterance, or some act for which there is clearly no instinctive tendency," which is highly debated for its portrayal of imitation as a mindless repeating act. True imitation is produced when behavioral, visual and vocal imitation is achieved, not just the simple reproduction of exclusive behaviors. Imitation is not a simple reproduction of what one sees; rather it incorporates intention and purpose. Animal imitation can range from survival purpose; imitating as a function of surviving or adapting, to unknown possible curiosity, which vary between different animals and produce different results depending on the measured intelligence of the animal.
There is considerable evidence to support true imitation in animals. Experiments performed on apes, birds and more specifically the Japanese quail have provided positive results to imitating behavior, demonstrating imitation of opaque behavior. However the problem that lies is in the discrepancies between what is considered true imitation in behavior. Birds have demonstrated visual imitation, where the animal simply does as it sees. Studies on apes however have proven more advanced results in imitation, being able to remember and learn from what they imitate. Songbirds have specialized brain circuits for song learning and can imitate vocalizations of others. It is well established that birdsong is a type of animal culture transmitted across generations in certain groups. Studies have demonstrated far more positive results with behavioral imitation in primates and birds than any other type of animal. Imitation in non-primate mammals and other animals have been proven difficult to conclude solid positive results for and poses a difficult question to scientists on why that is so.