Ice age


An ice age is a term describing periods of time when the reduction in the temperature of Earth's surface and atmosphere results in the presence or expansion of continental and polar ice sheets and alpine glaciers. The term is applied in several different senses to very long and comparatively short periods of cooling. Colder periods are called glacials or ice ages, and warmer periods are called interglacials.
Earth's climate alternates between icehouse and greenhouse periods based on whether there are glaciers on the planet, and for most of Earth's history it has been in a greenhouse period with little or no permanent ice. Over the very long term, Earth is currently in an icehouse period called the Late Cenozoic Ice Age, which started 34 million years ago. There have been colder and warmer periods within this ice age, and the term is also applied to the Quaternary glaciation, which started 2.58 million years ago. Within this period, the Last Interglacial ended 115,000 years ago, and was followed by the Last Glacial Period, which gave way to the current warm Holocene, which started 11,700 years ago. The most severe cold period of the LGP was the Last Glacial Maximum, which reached its maximum between 26,000 and 20,000 years ago. The most recent glaciation was the Younger Dryas between 12,800 and 11,700 years ago.

History of research

In 1742, Pierre Martel, an engineer and geographer living in Geneva, visited the valley of Chamonix in the Alps of Savoy. Two years later he published an account of his journey. He reported that the inhabitants of that valley attributed the dispersal of erratic boulders to the glaciers, saying that they had once extended much farther. Later similar explanations were reported from other regions of the Alps. In 1815 the carpenter and chamois hunter Jean-Pierre Perraudin explained erratic boulders in the Val de Bagnes in the Swiss canton of Valais as being due to glaciers previously extending further. An unknown woodcutter from Meiringen in the Bernese Oberland advocated a similar idea in a discussion with the Swiss-German geologist Jean de Charpentier in 1834. Comparable explanations are also known from the Val de Ferret in the Valais and the Seeland in western Switzerland and in Goethe's scientific work. Such explanations could also be found in other parts of the world. When the Bavarian naturalist Ernst von Bibra visited the Chilean Andes in 1849–1850, the natives attributed fossil moraines to the former action of glaciers.
Meanwhile, European scholars had begun to wonder what had caused the dispersal of erratic material. From the middle of the 18th century, some discussed ice as a means of transport. The Swedish mining expert Daniel Tilas was, in 1742, the first person to suggest drifting sea ice was a cause of the presence of erratic boulders in the Scandinavian and Baltic regions. In 1795, the Scottish philosopher and gentleman naturalist, James Hutton, explained erratic boulders in the Alps by the action of glaciers. Two decades later, in 1818, the Swedish botanist Göran Wahlenberg published his theory of a glaciation of the Scandinavian peninsula. He regarded glaciation as a regional phenomenon.
File:Haukalivatnet.JPG|thumb|Haukalivatnet lake where Jens Esmark in 1823 discovered similarities to moraines near existing glaciers in the high mountains
Only a few years later, the Danish-Norwegian geologist Jens Esmark argued for a sequence of worldwide ice ages. In a paper published in 1824, Esmark proposed changes in climate as the cause of those glaciations. He attempted to show that they originated from changes in Earth's orbit. Esmark discovered the similarity between moraines near Haukalivatnet lake near sea level in Rogaland and moraines at branches of Jostedalsbreen. Esmark's discovery were later attributed to or appropriated by Theodor Kjerulf and Louis Agassiz.
During the following years, Esmark's ideas were discussed and taken over in parts by Swedish, Scottish and German scientists. At the University of Edinburgh Robert Jameson seemed to be relatively open to Esmark's ideas, as reviewed by Norwegian professor of glaciology Bjørn G. Andersen. Jameson's remarks about ancient glaciers in Scotland were most probably prompted by Esmark. In Germany, Albrecht Reinhard Bernhardi, a geologist and professor of forestry at an academy in Dreissigacker, adopted Esmark's theory. In a paper published in 1832, Bernhardi speculated about the polar ice caps once reaching as far as the temperate zones of the globe.
In Val de Bagnes, a valley in the Swiss Alps, there was a long-held local belief that the valley had once been covered deep in ice, and in 1815 a local chamois hunter called Jean-Pierre Perraudin attempted to convert the geologist Jean de Charpentier to the idea, pointing to deep striations in the rocks and giant erratic boulders as evidence. Charpentier held the general view that these signs were caused by vast floods, and he rejected Perraudin's theory as absurd. In 1818 the engineer Ignatz Venetz joined Perraudin and Charpentier to examine a proglacial lake above the valley created by an ice dam as a result of the 1815 eruption of Mount Tambora, which threatened to cause a catastrophic flood when the dam broke. Perraudin attempted unsuccessfully to convert his companions to his theory, but when the dam finally broke, there were only minor erratics and no striations, and Venetz concluded that Perraudin was right and that only ice could have caused such major results. In 1821 he read a prize-winning paper on the theory to the Swiss Society, but it was not published until Charpentier, who had also become converted, published it with his own more widely read paper in 1834.
In the meantime, the German botanist Karl Friedrich Schimper was studying mosses which were growing on erratic boulders in the alpine upland of Bavaria. He began to wonder where such masses of stone had come from. During the summer of 1835 he made some excursions to the Bavarian Alps. Schimper came to the conclusion that ice must have been the means of transport for the boulders in the alpine upland. In the winter of 1835–36 he held some lectures in Munich. Schimper then assumed that there must have been global times of obliteration with a cold climate and frozen water. Schimper spent the summer months of 1836 at Devens, near Bex, in the Swiss Alps with his former university friend Louis Agassiz and Jean de Charpentier. Schimper, Charpentier and possibly Venetz convinced Agassiz that there had been a time of glaciation. During the winter of 1836–37, Agassiz and Schimper developed the theory of a sequence of glaciations. They mainly drew upon the preceding works of Venetz, Charpentier and on their own fieldwork. Agassiz appears to have been already familiar with Bernhardi's paper at that time. At the beginning of 1837, Schimper coined the term "ice age" for the period of the glaciers. In July 1837 Agassiz presented their synthesis before the annual meeting of the Swiss Society for Natural Research at Neuchâtel. The audience was very critical, and some were opposed to the new theory because it contradicted the established opinions on climatic history. Most contemporary scientists thought that Earth had been gradually cooling down since its birth as a molten globe.
In order to persuade the skeptics, Agassiz embarked on geological fieldwork. He published his book Study on Glaciers in 1840. Charpentier was put out by this, as he had also been preparing a book about the glaciation of the Alps. Charpentier felt that Agassiz should have given him precedence as it was he who had introduced Agassiz to in-depth glacial research. As a result of personal quarrels, Agassiz had also omitted any mention of Schimper in his book.
It took several decades before the ice age theory was fully accepted by scientists. This happened on an international scale in the second half of the 1870s, following the work of James Croll, including the publication of Climate and Time, in Their Geological Relations in 1875, which provided a credible explanation for the causes of ice ages.

Evidence

There are three main types of evidence for ice ages: geological, chemical, and paleontological.
Geological evidence for ice ages comes in various forms, including rock scouring and scratching, glacial moraines, drumlins, valley cutting, and the deposition of till or tillites and glacial erratics. Successive glaciations tend to distort and erase the geological evidence for earlier glaciations, making it difficult to interpret. Furthermore, this evidence was difficult to date exactly; early theories assumed that the glacials were short compared to the long interglacials. The advent of sediment and ice cores revealed the true situation: glacials are long, interglacials short. It took some time for the current theory to be worked out.
The chemical evidence mainly consists of variations in the ratios of isotopes in fossils present in sediments and sedimentary rocks and ocean sediment cores. For the most recent glacial periods, ice cores provide climate proxies, both from the ice itself and from atmospheric samples provided by included bubbles of air. Because water containing lighter isotopes has a lower heat of evaporation, its proportion decreases with warmer conditions. This allows a temperature record to be constructed. This evidence can be confounded, however, by other factors recorded by isotope ratios.
The paleontological evidence consists of changes in the geographical distribution of fossils. During a glacial period, cold-adapted organisms spread into lower latitudes, and organisms that prefer warmer conditions become extinct or retreat into lower latitudes. This evidence is also difficult to interpret because it requires:
  1. sequences of sediments covering a long period of time, over a wide range of latitudes and which are easily correlated;
  2. ancient organisms which survive for several million years without change and whose temperature preferences are easily diagnosed; and
  3. the finding of the relevant fossils.
Despite the difficulties, analysis of ice core and ocean sediment cores has provided a credible record of glacials and interglacials over the past few million years. These also confirm the linkage between ice ages and continental crust phenomena such as glacial moraines, drumlins, and glacial erratics. Hence the continental crust phenomena are accepted as good evidence of earlier ice ages when they are found in layers created much earlier than the time range for which ice cores and ocean sediment cores are available.