Positive feedback


Positive feedback is a process that occurs in a feedback loop where the outcome of a process reinforces the inciting process to build momentum. As such, these forces can exacerbate the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the magnitude of the perturbation. That is, A produces more of B' which in turn produces more of 'A. In contrast, a system in which the results of a change act to reduce or counteract it has negative feedback. Both concepts play an important role in science and engineering, including biology, chemistry, and cybernetics.
Mathematically, positive feedback is defined as a positive loop gain around a closed loop of cause and effect.
That is, positive feedback is in phase with the input, in the sense that it adds to make the input larger.
Positive feedback tends to cause system instability. When the loop gain is positive and above 1, there will typically be exponential growth, increasing oscillations, chaotic behavior or other divergences from equilibrium. System parameters will typically accelerate towards extreme values, which may damage or destroy the system, or may end with the system latched into a new stable state. Positive feedback may be controlled by signals in the system being filtered, damped, or limited, or it can be cancelled or reduced by adding negative feedback.
Positive feedback is used in digital electronics to force voltages away from intermediate voltages into '0' and '1' states. On the other hand, thermal runaway is a type of positive feedback that can destroy semiconductor junctions. Positive feedback in chemical reactions can increase the rate of reactions, and in some cases can lead to explosions. Positive feedback in mechanical design causes tipping-point, or over-centre, mechanisms to snap into position, for example in switches and locking pliers. Out of control, it can cause bridges to collapse. Positive feedback in economic systems can cause boom-then-bust cycles. A familiar example of positive feedback is the loud squealing or howling sound produced by audio feedback in public address systems: the microphone picks up sound from its own loudspeakers, amplifies it, and sends it through the speakers again.

Overview

Positive feedback enhances or amplifies an effect by it having an influence on the process which gave rise to it. For example, when part of an electronic output signal returns to the input, and is in phase with it, the system gain is increased. The feedback from the outcome to the originating process can be direct, or it can be via other state variables. Such systems can give rich qualitative behaviors, but whether the feedback is instantaneously positive or negative in sign has an extremely important influence on the results. Positive feedback reinforces and negative feedback moderates the original process. Positive and negative in this sense refer to loop gains greater than or less than zero, and do not imply any value judgements as to the desirability of the outcomes or effects. A key feature of positive feedback is thus that small disturbances get bigger. When a change occurs in a system, positive feedback causes further change, in the same direction.

Basic

A simple feedback loop is shown in the diagram. If the loop gain AB is positive, then a condition of positive or regenerative feedback exists.
If the functions A and B are linear and AB is smaller than unity, then the overall system gain from the input to output is finite but can be very large as AB approaches unity. In that case, it can be shown that the overall or loop gain from input to output is:
When AB > 1, the system is unstable, so does not have a well-defined gain; the gain may be called infinite.
Thus depending on the feedback, state changes can be convergent, or divergent. The result of positive feedback is to augment changes, so that small perturbations may result in big changes.
A system in equilibrium in which there is positive feedback to any change from its current state may be unstable, in which case the system is said to be in an unstable equilibrium. The magnitude of the forces that act to move such a system away from its equilibrium is an increasing function of the distance of the state from the equilibrium.
Positive feedback does not necessarily imply instability of an equilibrium, for example stable on and off states may exist in positive-feedback architectures.

Hysteresis

In the real world, positive feedback loops typically do not cause ever-increasing growth but are modified by limiting effects of some sort. According to Donella Meadows:
Hysteresis, in which the starting point affects where the system ends up, can be generated by positive feedback. When the gain of the feedback loop is above 1, then the output moves away from the input: if it is above the input, then it moves towards the nearest positive limit, while if it is below the input then it moves towards the nearest negative limit.
Once it reaches the limit, it will be stable. However, if the input goes past the limit, then the feedback will change sign and the output will move in the opposite direction until it hits the opposite limit. The system therefore shows bistable behaviour.

Terminology

The terms positive and negative were first applied to feedback before World War II. The idea of positive feedback was already current in the 1920s with the introduction of the regenerative circuit.
described regeneration in a set of electronic amplifiers as a case where the "feed-back" action is positive in contrast to negative feed-back action, which they mention only in passing. Harold Stephen Black's classic 1934 paper first details the use of negative feedback in electronic amplifiers. According to Black:
According to confusion in the terms arose shortly after this:
These confusions, along with the everyday associations of positive with good and negative with bad, have led many systems theorists to propose alternative terms. For example, Donella Meadows prefers the terms reinforcing and balancing feedbacks.

Examples and applications

In electronics

s were invented and patented in 1914 for the amplification and reception of very weak radio signals. Carefully controlled positive feedback around a single transistor amplifier can multiply its gain by 1,000 or more. Therefore, a signal can be amplified 20,000 or even 100,000 times in one stage, that would normally have a gain of only 20 to 50. The problem with regenerative amplifiers working at these very high gains is that they easily become unstable and start to oscillate. The radio operator has to be prepared to tweak the amount of feedback fairly continuously for good reception. Modern radio receivers use the superheterodyne design, with many more amplification stages, but much more stable operation and no positive feedback.
The oscillation that can break out in a regenerative radio circuit is used in electronic oscillators. By the use of tuned circuits or a piezoelectric crystal, the signal that is amplified by the positive feedback remains linear and sinusoidal. There are several designs for such harmonic oscillators, including the Armstrong oscillator, Hartley oscillator, Colpitts oscillator, and the Wien bridge oscillator. They all use positive feedback to create oscillations.
Many electronic circuits, especially amplifiers, incorporate negative feedback. This reduces their gain, but improves their linearity, input impedance, output impedance, and bandwidth, and stabilises all of these parameters, including the loop gain. These parameters also become less dependent on the details of the amplifying device itself, and more dependent on the feedback components, which are less likely to vary with manufacturing tolerance, age and temperature. The difference between positive and negative feedback for AC signals is one of phase: if the signal is fed back out of phase, the feedback is negative and if it is in phase the feedback is positive. One problem for amplifier designers who use negative feedback is that some of the components of the circuit will introduce phase shift in the feedback path. If there is a frequency where the phase shift reaches 180°, then the designer must ensure that the amplifier gain at that frequency is very low. If the loop gain at any frequency is greater than one, then the amplifier will oscillate at that frequency. Such oscillations are sometimes called parasitic oscillations. An amplifier that is stable in one set of conditions can break into parasitic oscillation in another. This may be due to changes in temperature, supply voltage, adjustment of front-panel controls, or even the proximity of a person or other conductive item.
Amplifiers may oscillate gently in ways that are hard to detect without an oscilloscope, or the oscillations may be so extensive that only a very distorted or no required signal at all gets through, or that damage occurs. Low frequency parasitic oscillations have been called 'motorboating' due to the similarity to the sound of a low-revving exhaust note.
Many common digital electronic circuits employ positive feedback. While normal simple Boolean logic gates usually rely simply on gain to push digital signal voltages away from intermediate values to the values that are meant to represent Boolean '0' and '1', but many more complex gates use feedback. When an input voltage is expected to vary in an analogue way, but sharp thresholds are required for later digital processing, the Schmitt trigger circuit uses positive feedback to ensure that if the input voltage creeps gently above the threshold, the output is forced smartly and rapidly from one logic state to the other. One of the corollaries of the Schmitt trigger's use of positive feedback is that, should the input voltage move gently down again past the same threshold, the positive feedback will hold the output in the same state with no change. This effect is called hysteresis: the input voltage has to drop past a different, lower threshold to 'un-latch' the output and reset it to its original digital value. By reducing the extent of the positive feedback, the hysteresis-width can be reduced, but it can not entirely be eradicated. The Schmitt trigger is, to some extent, a latching circuit.
File:Positive feedback bistable switch.svg|thumb|Positive feedback is a mechanism by which an output is enhanced, such as protein levels. However, in order to avoid any fluctuation in the protein level, the mechanism is inhibited stochastically, therefore when the concentration of the activated protein is past the threshold, the loop mechanism is activated and the concentration of A increases exponentially if d=k .
An electronic flip-flop, or "latch", or "bistable multivibrator", is a circuit that due to high positive feedback is not stable in a balanced or intermediate state. Such a bistable circuit is the basis of one bit of electronic memory. The flip-flop uses a pair of amplifiers, transistors, or logic gates connected to each other so that positive feedback maintains the state of the circuit in one of two unbalanced stable states after the input signal has been removed until a suitable alternative signal is applied to change the state. Computer random access memory can be made in this way, with one latching circuit for each bit of memory.
Thermal runaway occurs in electronic systems because some aspect of a circuit is allowed to pass more current when it gets hotter, then the hotter it gets, the more current it passes, which heats it some more and so it passes yet more current. The effects are usually catastrophic for the device in question. If devices have to be used near to their maximum power-handling capacity, and thermal runaway is possible or likely under certain conditions, improvements can usually be achieved by careful design.
Audio and video systems can demonstrate positive feedback. If a microphone picks up the amplified sound output of loudspeakers in the same circuit, then howling and screeching sounds of audio feedback will be heard, as random noise is re-amplified by positive feedback and filtered by the characteristics of the audio system and the room.