GNU Compiler Collection
The GNU Compiler Collection is a collection of compilers from the GNU Project that support various programming languages, hardware architectures, and operating systems. The Free Software Foundation distributes GCC as free software under the GNU General Public License. GCC is a key component of the GNU toolchain which is used for most projects related to GNU and the Linux kernel. With roughly 15 million lines of code in 2019, GCC is one of the largest free programs in existence. It has played an important role in the growth of free software, as both a tool and an example.
When it was first released in 1987 by Richard Stallman, GCC 1.0 was named the GNU C Compiler since it only handled the C programming language. It was extended to compile C++ in December of that year. Front ends were later developed for Objective-C, Objective-C++, Fortran, Ada, Go, D, Modula-2, Rust and COBOL among others. The OpenMP and OpenACC specifications are also supported in the C and C++ compilers.
As well as being the official compiler of the GNU operating system, GCC has been adopted as the standard compiler by many other modern Unix-like computer operating systems, including most Linux distributions. Most BSD family operating systems also switched to GCC shortly after its release, although since then, FreeBSD and Apple macOS have moved to the Clang compiler, largely due to licensing reasons. GCC can also compile code for Windows, Android, iOS, Solaris, HP-UX, AIX, and MS-DOS compatible operating systems.
GCC has been ported to more platforms and instruction set architectures than any other compiler, and is widely deployed as a tool in the development of both free and proprietary software. GCC is also available for many embedded systems, including ARM-based and Power ISA-based chips.
History
In late 1983, in an effort to bootstrap the GNU operating system, Richard Stallman asked Andrew S. Tanenbaum, the author of the Amsterdam Compiler Kit, for permission to use that software for GNU. When Tanenbaum advised him that the compiler was not free, and that only the university was free, Stallman decided to work on a different compiler. His initial plan was to rewrite an existing compiler from Lawrence Livermore National Laboratory from Pastel to C with some help from Len Tower and others. Stallman wrote a new C front end for the Livermore compiler, but then realized that it required megabytes of stack space, an impossibility on a 68000 Unix system with only 64 KB, and concluded he would have to write a new compiler from scratch. None of the Pastel compiler code ended up in GCC, though Stallman did use the C front end he had written.GCC was first released March 22, 1987, available by FTP from MIT. Stallman was listed as the author but cited others for their contributions, including Tower for "parts of the parser, RTL generator, RTL definitions, and of the Vax machine description", Jack Davidson and Christopher W. Fraser for the idea of using RTL as an intermediate language, and Paul Rubin for writing most of the preprocessor. Described as the "first free software hit" by Peter H. Salus, the GNU compiler arrived just at the time when Sun Microsystems was unbundling its development tools from its operating system, selling them separately at a higher combined price than the previous bundle, which led many of Sun's users to buy or download GCC instead of the vendor's tools. While Stallman considered GNU Emacs as his main project, by 1990 GCC supported thirteen computer architectures, was outperforming several vendor compilers, and was used commercially by several companies.
EGCS fork
As GCC was licensed under the GPL, programmers wanting to work in other directions—particularly those writing interfaces for languages other than C—were free to develop their own fork of the compiler, provided they meet the GPL's terms, including its requirements to distribute source code. Multiple forks proved inefficient and unwieldy, however, and the difficulty in getting work accepted by the official GCC project was greatly frustrating for many, as the project favored stability over new features. The FSF kept such close control on what was added to the official version of GCC 2.x that GCC was used as one example of the "cathedral" development model in Eric S. Raymond's essay The Cathedral and the Bazaar.In 1997, a group of developers formed the Experimental/Enhanced GNU Compiler System to merge several experimental forks into a single project. The basis of the merger was a development snapshot of GCC. Mergers included g77, PGCC, many C++ improvements, and many new architectures and operating system variants.
While both projects followed each other's changes closely, EGCS development proved considerably more vigorous, so much so that the FSF officially halted development on their GCC 2.x compiler, blessed EGCS as the official version of GCC, and appointed the EGCS project as the GCC maintainers in April 1999. With the release of GCC 2.95 in July 1999 the two projects were once again united. GCC has since been maintained by a varied group of programmers from around the world under the direction of a steering committee.
GCC 3 removed a front-end for CHILL due to a lack of maintenance.
Before version 4.0 the Fortran front end was
g77, which only supported FORTRAN 77, but later was dropped in favor of the new GNU Fortran front end that supports Fortran 95 and large parts of Fortran 2003 and Fortran 2008 as well.As of version 4.8, GCC is implemented in C++.
Support for Cilk Plus existed from GCC 5 to GCC 7.
GCC has been ported to a wide variety of instruction set architectures, and is widely deployed as a tool in the development of both free and proprietary software. GCC is also available for many embedded systems, including Symbian, ARM-based, and Power ISA-based chips. The compiler can target a wide variety of platforms, including video game consoles such as the PlayStation 2, Cell SPE of PlayStation 3, and Dreamcast. It has been ported to "more than 60 platforms".
Supported languages
GCC includes front ends for C, C++, Objective-C, Objective-C++, Fortran, Ada, Go, D, Modula-2, Rust, COBOL, and ALGOL 68 programming languages, with the OpenMP and OpenACC parallel language extensions being supported since GCC 5.1. Versions prior to GCC 7 also supported Java, allowing compilation of Java to native machine code.Third-party front ends exist for many languages, such as Pascal, Mercury, Modula-3, VHDL and PL/I. A few experimental branches exist to support additional languages, such as the GCC UPC compiler for Unified Parallel C.
The default target for C++ since GCC 15.1 is gnu++20, a superset of C++20, and the default target for C since GCC 15 is gnu23, a superset of C23, with strict standard support also available. GCC also provides experimental support for C2Y, C++23, and C++26.
Design
GCC's external interface follows Unix conventions. Users invoke a language-specific driver program, which interprets command arguments, calls the actual compiler, runs the assembler on the output, and then optionally runs the linker to produce a complete executable binary.Each of the language compilers is a separate program that reads source code and outputs machine code. All have a common internal structure. A per-language front end parses the source code in that language and produces an abstract syntax tree.
These are, if necessary, converted to the middle end's input representation, called GENERIC form; the middle end then gradually transforms the program towards its final form. Compiler optimizations and static code analysis techniques are applied to the code. These work on multiple representations, mostly the architecture-independent GIMPLE representation and the architecture-dependent RTL representation. Finally, machine code is produced using architecture-specific pattern matching originally based on an algorithm of Jack Davidson and Chris Fraser.
GCC was written primarily in C except for parts of the Ada front end. The distribution includes the standard libraries for Ada and C++ whose code is mostly written in those languages. On some platforms, the distribution also includes a low-level runtime library, libgcc, written in a combination of machine-independent C and processor-specific machine code, designed primarily to handle arithmetic operations that the target processor cannot perform directly.
GCC uses many additional tools in its build, many of which are installed by default by many Unix and Linux distributions, including Perl, Flex, Bison, and other common tools. In addition, it currently requires three additional libraries to be present in order to build: GMP, MPC, and MPFR.
In May 2010, the GCC steering committee decided to allow use of a C++ compiler to compile GCC. The compiler was intended to be written mostly in C plus a subset of features from C++. In particular, this was decided so that GCC's developers could use the destructors and generics features of C++.
In August 2012, the GCC steering committee announced that GCC now uses C++ as its implementation language. This means that to build GCC from sources, a C++ compiler is required that understands ISO/IEC C++03 standard.
On May 18, 2020, GCC moved away from ISO/IEC C++03 standard to ISO/IEC C++11 standard.
Front ends
Each front end uses a parser to produce the abstract syntax tree of a given source file. Due to the syntax tree abstraction, source files of any of the different supported languages can be processed by the same back end. GCC started out using LALR parsers generated with Bison, but gradually switched to hand-written recursive-descent parsers for C++ in 2004, and for C and Objective-C in 2006. As of 2021 all front ends use hand-written recursive-descent parsers.Until GCC 4.0, the tree representation of the program was not fully independent of the processor being targeted. The meaning of a tree was somewhat different for different language front ends, and front ends could provide their own tree codes. This was simplified with the introduction of GENERIC and GIMPLE, two new forms of language-independent trees that were introduced with the advent of GCC 4.0. GENERIC is more complex, based on the GCC 3.x Java front end's intermediate representation. GIMPLE is a simplified GENERIC, in which various constructs are lowered to multiple GIMPLE instructions. The C, C++, and Java front ends produce GENERIC directly in the front end. Other front ends instead have different intermediate representations after parsing and convert these to GENERIC.
In either case, the so-called "gimplifier" then converts this more complex form into the simpler SSA-based GIMPLE form that is the common language for a large number of language- and architecture-independent global optimizations.