Flashtube
A flashtube produces an electrostatic discharge with an extremely intense, incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with a gas that, when triggered, ionizes and conducts a high-voltage pulse to make light. Flashtubes are used most in photography; they also are used in science, medicine, industry, and entertainment.
Construction
The lamp consists of a hermetically sealed glass tube which is filled with a noble gas, usually xenon, and electrodes to carry electric current to the gas. Additionally, a high voltage power source is necessary to energize the gas as a trigger event. A charged photoflash capacitor is usually used to supply energy for the flash, so as to allow very speedy delivery of very high electrical current when the lamp is triggered.Glass envelopes
The glass envelope is most commonly a thin tube, often made of fused quartz, borosilicate or Pyrex, which may be straight, or bent into a number of different shapes, including helical, "U" shape, and circular. In some applications, the emission of ultraviolet light is undesired, whether due to production of ozone, damage to laser rods, degradation of plastics, or other detrimental effects. In these cases, a doped fused silica is used. Doping with titanium dioxide can provide different cutoff wavelengths on the ultraviolet side, but the material suffers from solarization; it is often used in medical and sun-ray lamps and some non-laser lamps. A better alternative is a cerium-doped quartz; it does not suffer from solarization and has higher efficiency, as part of the absorbed ultraviolet is reradiated as visible via fluorescence. Its cutoff is at about 380 nm. Conversely, when ultraviolet is called for, a synthetic quartz is used as the envelope; it is the most expensive of the materials, but it is not susceptible to solarization and its cutoff is at 160 nm.The power level of the lamps is rated in watts/area, total electrical input power divided by the lamp's inner wall surface. Cooling of the electrodes and the lamp envelope is of high importance at high power levels. Air cooling is sufficient for lower average power levels. High power lamps are cooled with a liquid, typically by flowing deionized water through a tube in which the lamp is encased. Water-cooled lamps will generally have the glass shrunk around the electrodes, to provide a direct thermal conductor between them and the cooling water. The cooling medium should flow also across the entire length of the lamp and electrodes. High average power or continuous-wave arc lamps must have the water flow across the ends of the lamp, and across the exposed ends of the electrodes as well, so the deionized water is used to prevent a short circuit. Above 15 W/cm2 forced air cooling is required; liquid cooling if in a confined space. Liquid cooling is generally necessary above 30 W/cm2.
Thinner walls can survive higher average-power loads due to lower mechanical strain across the thickness of the material, which is caused by a temperature gradient between the hot plasma and cooling water,. For this reason, thinner glass is often used for continuous-wave arc-lamps. Thicker materials can generally handle more impact energy from the shock wave that a short-pulsed arc can generate, so quartz as much as 1 mm thick is often used in the construction of flashtubes. The material of the envelope provides another limit for the output power; 1 mm thick fused quartz has a limit of 200 W/cm2, synthetic quartz of same thickness can run up to 240 W/cm2. Other glasses such as borosilicate generally have less than half the power loading capacity of quartz. Aging lamps require some derating, due to increased energy absorption in the glass due to solarization and sputtered deposits.
Electrodes and seals
The electrodes protrude into each end of the tube, and are sealed to the glass using a few different methods. "Ribbon seals" use thin strips of molybdenum foil bonded directly to the glass, which are very durable, but are limited in the amount of current that can pass through. "Solder seals" bond the glass to the electrode with a solder for a very strong mechanical seal, but are limited to low temperature operation. Most common in laser pumping applications is the "rod seal", where the rod of the electrode is wetted with another type of glass and then bonded directly to a quartz tube. This seal is very durable and capable of withstanding very high temperature and currents. The seal and the glass must have the same coefficient of thermal expansion.For low electrode wear the electrodes are usually made of tungsten, which has the highest melting point of any metal, to handle the thermionic emission of electrons. Cathodes are often made from porous tungsten filled with a barium compound, which gives low work function; the structure of cathode has to be tailored for the application. Anodes are usually made from pure tungsten, or, when good machinability is required, lanthanum-alloyed tungsten, and are often machined to provide extra surface area to cope with power loading. DC arc lamps often have a cathode with a sharp tip, to help keep the arc away from the glass and to control temperature. Flashtubes usually have a cathode with a flattened radius, to reduce the incidence of hot spots and decrease sputter caused by peak currents, which may be in excess of 1000 amperes. Electrode design is also influenced by the average power. At high levels of average power, care has to be taken to achieve sufficient cooling of the electrodes. While anode temperature is of lower importance, overheating the cathode can greatly reduce the lamp's life expectancy.