Ediacaran biota


The Ediacaran 'biota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.
The Ediacaran biota may have undergone evolutionary radiation in a proposed event called the Avalon explosion,. This was after the Earth had thawed from the Cryogenian period's extensive glaciation. This biota largely disappeared with the rapid increase in biodiversity known as the Cambrian explosion. Most of the currently existing body plans of animals first appeared in the fossil record of the Cambrian rather than the Ediacaran. For macroorganisms, the Cambrian biota appears to have almost completely replaced the organisms that dominated the Ediacaran fossil record, although relationships are still a matter of debate.
The organisms of the Ediacaran Period first appeared around and flourished until the cusp of the Cambrian, when the characteristic communities of fossils vanished. A diverse Ediacaran community was discovered in 1995 in Sonora, Mexico, and is approximately 555 million years in age, roughly coeval with Ediacaran fossils of the Ediacara Hills in South Australia and the White Sea on the coast of Russia. While rare fossils that may represent survivors have been found as late as the Middle Cambrian, the earlier fossil communities disappear from the record at the end of the Ediacaran, leaving only curious fragments of once-thriving ecosystems. Multiple hypotheses exist to explain the disappearance of this biota, including preservation bias, a changing environment, the advent of predators and competition from other life-forms. A sampling, reported in 2018, of late Ediacaran strata across the scattered remnants of Baltica suggests the flourishing of the organisms coincided with conditions of low overall productivity with a very high percentage produced by bacteria, which may have led to high concentrations of dissolved organic material in the oceans.
Determining where Ediacaran organisms fit in the tree of life has proven challenging; it is not even established that most of them were animals, with suggestions that they were lichens, algae, protists known as foraminifera, fungi or microbial colonies, or hypothetical intermediates between plants and animals. The morphology and habit of some taxa suggest relationships to Porifera or Cnidaria.
Kimberella may show a similarity to molluscs, and other organisms have been thought to possess bilateral symmetry, although this is controversial. Most macroscopic fossils are morphologically distinct from later life-forms: they resemble discs, tubes, mud-filled bags or quilted mattresses. Due to the difficulty of deducing evolutionary relationships among these organisms, some palaeontologists have suggested that these represent completely extinct lineages that do not resemble any living organism. Palaeontologist Adolf Seilacher proposed a separate subkingdom level category Vendozoa' in the Linnaean hierarchy for the Ediacaran biota. If these enigmatic organisms left no descendants, their strange forms might be seen as a "failed experiment" in multicellular life, with later multicellular life evolving independently from unrelated single-celled organisms. A 2018 study confirmed that one of the period's most-prominent and iconic fossils, Dickinsonia, included cholesterol, suggesting affinities to animals, fungi, or red algae.

History

The first Ediacaran fossils discovered were the disc-shaped Aspidella terranovica in 1868. Their discoverer, Scottish geologist Alexander Murray, found them useful aids for correlating the age of rocks around Newfoundland. However, since they lay below the "Primordial Strata" of the Cambrian that was then thought to contain the very first signs of animal life, a proposal four years after their discovery by Elkanah Billings that these simple forms represented fauna was dismissed by his peers. Instead, they were interpreted as gas escape structures or inorganic concretions. No similar structures elsewhere in the world were then known and the one-sided debate soon fell into obscurity. In 1933, Georg Gürich discovered specimens in Namibia but assigned them to the Cambrian Period. In 1946, Reg Sprigg noticed "jellyfishes" in the Ediacara Hills of Australia's Flinders Ranges, which were at the time believed to be Early Cambrian.
It was not until the British discovery of the iconic Charnia that the Precambrian was seriously considered as containing life. This frond-shaped fossil was found in England's Charnwood Forest first by a 15 year-old girl in 1956 and then the next year by a group of three schoolboys including 15 year-old Roger Mason. Due to the detailed geological mapping of the British Geological Survey, there was no doubt these fossils sat in Precambrian rocks. Palaeontologist Martin Glaessner finally, in 1959, made the connection between this and the earlier finds and with a combination of improved dating of existing specimens and an injection of vigour into the search, many more instances were recognised.
All specimens discovered until 1967 were in coarse-grained sandstone that prevented preservation of fine details, making interpretation difficult. S.B. Misra's discovery of fossiliferous ash-beds at the Mistaken Point assemblage in Newfoundland changed all this as the delicate detail preserved by the fine ash allowed the description of features that were previously undiscernible. It was also the first discovery of Ediacarans in deep water sediments.
Poor communication, combined with the difficulty in correlating globally distinct formations, led to a plethora of different names for the biota.
In 1960 the French name "Ediacarien" – after the Ediacara Hills – was added to the competing terms "Sinian" and "Vendian" for terminal-Precambrian rocks, and these names were also applied to the life-forms. "Ediacaran" and "Ediacarian" were subsequently applied to the epoch or period of geological time and its corresponding rocks. In March 2004, the International Union of Geological Sciences ended the inconsistency by formally naming the terminal period of the Neoproterozoic after the Australian locality.
The term "Ediacaran biota" and similar has, at various times, been used in a geographic, stratigraphic, taphonomic, or biological sense, with the latter the most common in modern literature.

Preservation

Microbial mats

s are areas of sediment stabilised by the presence of colonies of microbes that secrete sticky fluids or otherwise bind the sediment particles. They appear to migrate upwards when covered by a thin layer of sediment but this is an illusion caused by the colony's growth; individuals do not, themselves, move. If too thick a layer of sediment is deposited before they can grow or reproduce through it, parts of the colony will die leaving behind fossils with a characteristically wrinkled and tubercular texture.
Some Ediacaran strata with the texture characteristics of microbial mats contain fossils, and Ediacaran fossils are almost always found in beds that contain these microbial mats. Although microbial mats were once widespread before the Cambrian substrate revolution, the evolution of grazing organisms vastly reduced their numbers. These communities are now limited to inhospitable refugia, such as the stromatolites found in Hamelin Pool Marine Nature Reserve in Shark Bay, Western Australia, where the salt levels can be twice those of the surrounding sea.

Fossilization

The preservation of Ediacaran fossils is of interest, since as soft-bodied organisms they would normally not fossilize. Further, unlike later soft-bodied fossil biota such as the Burgess Shale or Solnhofen Limestone, the Ediacaran biota is not found in a restricted environment subject to unusual local conditions: they are global. The processes that were operating must therefore have been systemic and worldwide. Something about the Ediacaran Period permitted these delicate creatures to be left behind; the fossils may have been preserved by virtue of rapid covering by ash or sand, trapping them against the mud or microbial mats on which they lived. Their preservation was possibly enhanced by the high concentration of silica in the oceans before silica-secreting organisms such as sponges and diatoms became prevalent. Ash beds provide more detail and can readily be dated to the nearest million years or better using radiometric dating. However, it is more common to find Ediacaran fossils under sandy beds deposited by storms or in turbidites formed by high-energy bottom-scraping ocean currents. Soft-bodied organisms today rarely fossilize during such events, but the presence of widespread microbial mats probably aided preservation by stabilising their impressions in the sediment below.

Scale of preservation

The rate of cementation of the overlying substrate relative to the rate of decomposition of the organism determines whether the top or bottom surface of an organism is preserved. Most disc-shaped fossils decomposed before the overlying sediment was cemented, whereupon ash or sand slumped in to fill the void, leaving a cast of the organism's underside. Conversely, quilted fossils tended to decompose after the cementation of the overlying sediment; hence their upper surfaces are preserved. Their more resistant nature is reflected in the fact that, in rare occasions, quilted fossils are found within storm beds as the high-energy sedimentation did not destroy them as it would have the less-resistant discs. Further, in some cases, the bacterial precipitation of minerals formed a "death mask", ultimately leaving a positive, cast-like impression of the organism.