Modem


A modulator-demodulator, commonly referred to as a modem, is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carrier wave signals to encode digital information, while the receiver demodulates the signal to recreate the original digital information. The goal is to produce a signal that can be transmitted easily and decoded reliably. Modems can be used with almost any means of transmitting analog signals, from LEDs to radio.
Early modems were devices that used audible sounds suitable for transmission over traditional telephone systems and leased lines. These generally operated at 110 or 300 bits per second, and the connection between devices was normally manual, using an attached telephone handset. By the 1970s, higher speeds of 1,200 and 2,400 bit/s for asynchronous dial connections, 4,800 bit/s for synchronous leased line connections and 35 kbit/s for synchronous conditioned leased lines were available. By the 1980s, less expensive 1,200 and 2,400 bit/s dialup modems were being released, and modems working on radio and other systems were available. As device sophistication grew rapidly in the late 1990s, telephone-based modems quickly exhausted the available bandwidth, reaching 56 kbit/s.
The rise of public use of the internet during the late 1990s led to demands for much higher performance, leading to the move away from audio-based systems to entirely new encodings on cable television lines and short-range signals in subcarriers on telephone lines. The move to cellular telephones, especially in the late 1990s and the emergence of smartphones in the 2000s led to the development of ever-faster radio-based systems. Today, modems are ubiquitous and largely invisible, included in almost every mobile computing device in one form or another, and generally capable of speeds on the order of tens or hundreds of megabytes per second.

Speeds

Modems are frequently classified by the maximum amount of data they can send in a given unit of time, usually expressed in bits per second or rarely in bytes per second. Modern broadband modem speeds are typically expressed in megabits per second.
Historically, modems were often classified by their symbol rate, measured in baud. The baud unit denotes symbols per second, or the number of times per second the modem sends a new signal. For example, the ITU-T V.21 standard used audio frequency-shift keying with two possible frequencies, corresponding to two distinct symbols, to carry 300 bits per second using 300 baud. By contrast, the original ITU-T V.22 standard, which could transmit and receive four distinct symbols, transmitted 1,200 bits by sending 600 symbols per second using phase-shift keying.
Many modems are variable-rate, permitting them to be used over a medium with less than ideal characteristics, such as a telephone line that is of poor quality or is too long. This capability is often adaptive so that a modem can discover the maximum practical transmission rate during the connect phase, or during operation.

Overall history

Modems grew out of the need to connect teleprinters over ordinary phone lines instead of the more expensive leased lines which had previously been used for current loop–based teleprinters and automated telegraphs. The earliest devices which satisfy the definition of a modem may have been the multiplexers used by news wire services in the 1920s.
In 1941, the Allies developed a voice encryption system called SIGSALY which used a vocoder to digitize speech, then encrypted the speech with one-time pad and encoded the digital data as tones using frequency shift keying. This was also a digital modulation technique, making this an early modem.
Commercial modems largely did not become available until the late 1950s, when the rapid development of computer technology created demand for a method of connecting computers together over long distances, resulting in the AT&T Corporation and then other businesses producing an increasing number of computer modems for use over both switched and leased telephone lines.
Later developments would produce modems that operated over cable television lines, power lines, and various [|radio technologies], as well as modems that achieved much higher speeds over telephone lines.

Dial-up

A dial-up modem transmits computer data over an ordinary switched telephone line that has not been designed for data use. It was once a widely known technology, mass-marketed globally dial-up internet access. In the 1990s, tens of millions of people in the United States alone used dial-up modems for internet access.
Dial-up service has since been largely superseded by broadband internet, such as DSL.

History

1950s

Mass production of telephone line modems in the United States began as part of the SAGE air-defense system in 1958, connecting terminals at various airbases, radar sites, and command-and-control centers to the SAGE director centers scattered around the United States and Canada.
Shortly afterwards in 1959, the technology in the SAGE modems was made available commercially as the Bell 101, which provided 110 bit/s speeds. Bell called this and several other early modems "datasets".

1960s

Some early modems were based on touch-tone frequencies, such as Bell 400-style touch-tone modems.
The Bell 103A standard was introduced by AT&T in 1962. It provided full-duplex service at 300 bit/s over normal phone lines. Frequency-shift keying was used, with the call originator transmitting at 1,070 and 1,270 Hz and the answering modem transmitting at 2,025 and 2,225 Hz.
The 103 modem would eventually become a de facto standard once third-party modems reached the market, and throughout the 1970s, independently made modems compatible with the Bell 103 de facto standard were commonplace. Example models included the Novation CAT and the Anderson-Jacobson. A lower-cost option was the Pennywhistle modem, designed to be built using readily available parts.
Teletype machines were granted access to remote networks such as the Teletypewriter Exchange using the Bell 103 modem. AT&T also produced reduced-cost units, the originate-only 113D and the answer-only 113B/C modems.

1970s

The 201A ''Data-Phone was a synchronous modem using two-bit-per-symbol phase-shift keying encoding, achieving 2,000 bit/s half-duplex over normal phone lines. In this system the two tones for any one side of the connection are sent at similar frequencies as in the 300 bit/s systems, but slightly out of phase.
In early 1973, Vadic introduced the
VA3400'' which performed full-duplex at 1,200 bit/s over a normal phone line.
In November 1976, AT&T introduced the 212A modem, similar in design, but using the lower frequency set for transmission. It was not compatible with the VA3400, but it would operate with 103A modem at 300 bit/s.
In 1977, Vadic responded with the VA3467 triple modem, an answer-only modem sold to computer center operators that supported Vadic's 1,200-bit/s mode, AT&T's 212A mode, and 103A operation.

1980s

A significant advance in modems was the Hayes Smartmodem, introduced in 1981. The Smartmodem was an otherwise standard 103A 300 bit/s direct-connect modem, but it introduced a command language which allowed the computer to make control requests, such as commands to dial or answer calls, over the same RS-232 interface used for the data connection. The command set used by this device became a de facto standard, the Hayes command set, which was integrated into devices from many other manufacturers.
Automatic dialing was not a new capabilityit had been available via separate automatic calling units, and via modems using the X.21 interfacebut the Smartmodem made it available in a single device that could be used with even the most minimal implementations of the ubiquitous RS-232 interface, making this capability accessible from virtually any system or language.
The introduction of the Smartmodem made communications much simpler and more easily accessed. This provided a growing market for other vendors, who licensed the Hayes patents and competed on price or by adding features. This eventually led to legal action over use of the patented Hayes command language.
Dial modems generally remained at 300 and 1,200 bit/s into the mid-1980s.
The introduction of microcomputer systems with internal expansion slots made small internal modems practical. This led to a series of popular modems for the S-100 bus and Apple II computers that could directly dial out, answer incoming calls, and hang up entirely from software, the basic requirements of a bulletin board system. The seminal CBBS for instance was created on an S-100 machine with a Hayes internal modem, and a number of similar systems followed.
Commodore's 1982 VicModem for the VIC-20 was the first modem to be sold under $100, and the first modem to sell a million units.
In 1983, Prentice Communication introduced the Popcom X100, a Hayes-compatible modem built into an extremely compact case with an internal power supply, intended to be plugged into a wall indefinitely. It was one of the most popular modems for IBM PC compatibles until Prentice went bankrupt in the late 1980s.
In 1984, V.22bis was created, a 2,400-bit/s system similar in concept to the 1,200-bit/s Bell 212. This bit rate increase was achieved by defining four or sixteen distinct symbols, which allowed the encoding of two or four bits per symbol instead of only one. By the late 1980s, many modems could support improved standards like this, and 2,400-bit/s operation was becoming common.
Increasing modem speed greatly improved the responsiveness of online systems and made file transfer practical. This led to rapid growth of online services with large file libraries, which in turn gave more reason to own a modem. The rapid update of modems led to a similar rapid increase in BBS use.
Meanwhile, a number of Videotex services, especially France's Minitel arose. These used V.23, which was asymmetric full-duplex and allowed "pages" of information to be downloaded at 1,200-bit/s at the same time as accepting user input at 75-bit/s.
Echo cancellation became a feature of modems in this period, which allowed both modems to ignore their own reflected signals. This way both modems can simultaneously transmit and receive over the full spectrum of the phone line, improving the available bandwidth.
Additional improvements were introduced by quadrature amplitude modulation encoding, which increased the number of bits per symbol to four through a combination of phase shift and amplitude.
Transmitting at 1,200 baud produced the 4,800 bit/s V.27ter standard, and at 2,400 baud the 9,600 bit/s V.32. The carrier frequency was 1,650 Hz in both systems.
The introduction of these higher-speed systems also led to the development of the digital fax machine during the 1980s. While early fax technology also used modulated signals on a phone line, digital fax used the now-standard digital encoding used by computer modems. This eventually allowed computers to send and receive fax images.