Information and communications technology


Information and communications technology is an extensional term for information technology that stresses the role of unified communications and the integration of telecommunications and computers, as well as necessary enterprise software, middleware, storage and audiovisual, that enable users to access, store, transmit, understand and manipulate information.
ICT is also used to refer to the convergence of audiovisuals and telephone networks with computer networks through a single cabling or link system. There are large economic incentives to merge the telephone networks with the computer network system using a single unified system of cabling, signal distribution, and management. ICT is an umbrella term that includes any communication device, encompassing radio, television, cell phones, computer and network hardware, satellite systems and so on, as well as the various services and appliances with them such as video conferencing and distance learning. ICT also includes analog technology, such as paper communication, and any mode that transmits communication.
ICT is a broad subject and the concepts are evolving. It covers any product that will store, retrieve, manipulate, process, transmit, or receive information electronically in a digital form. Skills Framework for the Information Age is one of many models for describing and managing competencies for ICT professionals in the 21st century.

Etymology

The phrase "information and communication technologies" has been used by academic researchers since the 1980s. The abbreviation "ICT" became popular after it was used in a report to the UK government by Dennis Stevenson in 1997, and then in the revised National Curriculum for England, Wales and Northern Ireland in 2000. However, in 2012, the Royal Society recommended that the use of the term "ICT" should be discontinued in British schools "as it has attracted too many negative connotations". From 2014, the National Curriculum has used the word computing, which reflects the addition of computer programming into the curriculum.
Variations of the phrase have spread worldwide. The United Nations has created a "United Nations Information and Communication Technologies Task Force" and an internal "Office of Information and Communications Technology".

Monetization

The money spent on IT worldwide has been estimated as US$3.8 trillion in 2017 and has been growing at less than 5% per year since 2009. The estimated 2018 growth of the entire ICT is 5%. The biggest growth of 16% is expected in the area of new technologies.
The 2014 IT budget of the US federal government was nearly $82 billion. IT costs, as a percentage of corporate revenue, have grown 50% since 2002, putting a strain on IT budgets. When looking at current companies' IT budgets, 75% are recurrent costs, used to "keep the lights on" in the IT department, and 25% are the cost of new initiatives for technology development.
The average IT budget has the following breakdown:
  • 34% personnel costs, 31% after correction
  • 16% software costs, 29% after correction
  • 33% hardware costs, 26% after correction
  • 17% costs of external service providers, 14% after correction
The estimated amount of money spent in 2022 is just over US$6 trillion.

Technological capacity

The world's technological capacity to store information grew from 2.6 exabytes in 1986 to 15.8 in 1993, over 54.5 in 2000, and to 295 exabytes in 2007, and some 5 zettabytes in 2014. This is the informational equivalent to 1.25 stacks of CD-ROM from the earth to the moon in 2007, and the equivalent of 4,500 stacks of printed books from the earth to the sun in 2014. The world's technological capacity to receive information through one-way broadcast networks was 432 exabytes of information in 1986, 715 exabytes in 1993, 1.2 zettabytes in 2000, and 1.9 zettabytes in 2007. The world's effective capacity to exchange information through two-way telecommunication networks was 281 petabytes of information in 1986, 471 petabytes in 1993, 2.2 exabytes in 2000, 65 exabytes in 2007, and some 100 exabytes in 2014. The world's technological capacity to compute information with humanly guided general-purpose computers grew from 3.0 × 10^8 MIPS in 1986, to 6.4 x 10^12 MIPS in 2007.

Sector in the OECD

The following is a list of OECD countries by share of ICT sector in total value added in 2013.
RankCountryICT sector in %Relative size
1South Koreabartable|10.7||10

ICT Development Index

The ICT Development Index ranks and compares the level of ICT use and access across the various countries around the world. In 2014 ITU released the latest rankings of the IDI, with Denmark attaining the top spot, followed by South Korea. The top 30 countries in the rankings include most high-income countries where the quality of life is higher than average, which includes countries from Europe and other regions such as "Australia, Bahrain, Canada, Japan, Macao, New Zealand, Singapore, and the United States; almost all countries surveyed improved their IDI ranking this year."

The WSIS process and development goals

On 21 December 2001, the United Nations General Assembly approved Resolution 56/183, endorsing the holding of the World Summit on the Information Society to discuss the opportunities and challenges facing today's information society. According to this resolution, the General Assembly related the Summit to the United Nations Millennium Declaration's goal of implementing ICT to achieve Millennium Development Goals. It also emphasized a multi-stakeholder approach to achieve these goals, using all stakeholders including civil society and the private sector, in addition to governments.
To help anchor and expand ICT to every habitable part of the world, "2015 is the deadline for achievements of the UN Millennium Development Goals, which global leaders agreed upon in the year 2000."

In education

There is evidence that, to be effective in education, ICT must be fully integrated into the pedagogy. Specifically, when teaching literacy and math, using ICT in combination with Writing to Learn produces better results than traditional methods alone or ICT alone.
The United Nations Educational, Scientific and Cultural Organisation, a division of the United Nations, has made integrating ICT into education as part of its efforts to ensure equity and access to education. The following, which was taken directly from a UNESCO publication on educational ICT, explains the organization's position on the initiative.
Information and Communication Technology can contribute to universal access to education, equity in education, the delivery of quality learning and teaching, teachers' professional development and more efficient education management, governance, and administration. UNESCO takes a holistic and comprehensive approach to promote ICT in education. Access, inclusion, and quality are among the main challenges they can address. The Organization's Intersectoral Platform for ICT in education focuses on these issues through the joint work of three of its sectors: Communication & Information, Education and Science.

Despite the power of computers to enhance and reform teaching and learning practices, improper implementation is a widespread issue beyond the reach of increased funding and technological advances with little evidence that teachers and tutors are properly integrating ICT into everyday learning. Intrinsic barriers such as a belief in more traditional teaching practices and individual attitudes towards computers in education as well as the teachers own comfort with computers and their ability to use them all as result in varying effectiveness in the integration of ICT in the classroom.

Mobile learning for refugees

School environments play an important role in facilitating language learning. However, language and literacy barriers are obstacles preventing refugees from accessing and attending school, especially outside camp settings.
Mobile-assisted language learning apps are key tools for language learning. Mobile solutions can provide support for refugees' language and literacy challenges in three main areas: literacy development, foreign language learning and translations. Mobile technology is relevant because communicative practice is a key asset for refugees and immigrants as they immerse themselves in a new language and a new society. Well-designed mobile language learning activities connect refugees with mainstream cultures, helping them learn in authentic contexts.

Developing countries

Africa

ICT has been employed as an educational enhancement in Sub-Saharan Africa since the 1960s. Beginning with television and radio, it extended the reach of education from the classroom to the living room, and to geographical areas that had been beyond the reach of the traditional classroom. As the technology evolved and became more widely used, efforts in Sub-Saharan Africa were also expanded. In the 1990s a massive effort to push computer hardware and software into schools was undertaken, with the goal of familiarizing both students and teachers with computers in the classroom. Since then, multiple projects have endeavoured to continue the expansion of ICT's reach in the region, including the One Laptop Per Child project, which by 2015 had distributed over 2.4 million laptops to nearly two million students and teachers.
The inclusion of ICT in the classroom, often referred to as M-Learning, has expanded the reach of educators and improved their ability to track student progress in Sub-Saharan Africa. In particular, the mobile phone has been most important in this effort. Mobile phone use is widespread, and mobile networks cover a wider area than internet networks in the region. The devices are familiar to student, teacher, and parent, and allow increased communication and access to educational materials. In addition to benefits for students, M-learning also offers the opportunity for better teacher training, which leads to a more consistent curriculum across the educational service area. In 2011, UNESCO started a yearly symposium called Mobile Learning Week with the purpose of gathering stakeholders to discuss the M-learning initiative.
Implementation is not without its challenges. While mobile phone and internet use are increasing much more rapidly in Sub-Saharan Africa than in other developing countries, the progress is still slow compared to the rest of the developed world, with smartphone penetration only expected to reach 20% by 2017. Additionally, there are gender, social, and geo-political barriers to educational access, and the severity of these barriers vary greatly by country. Overall, 29.6 million children in Sub-Saharan Africa were not in school in the year 2012, owing not just to the geographical divide, but also to political instability, the importance of social origins, social structure, and gender inequality. Once in school, students also face barriers to quality education, such as teacher competency, training and preparedness, access to educational materials, and lack of information management.