Bioadhesive
Bioadhesives are natural polymeric materials that act as adhesives. The term is sometimes used more loosely to describe a glue formed synthetically from biological monomers such as sugars, or to mean a synthetic material designed to adhere to biological tissue.
Bioadhesives may consist of a variety of substances, but proteins and carbohydrates feature prominently. Proteins such as gelatin and carbohydrates such as starch have been used as general-purpose glues by man for many years, but typically their performance shortcomings have seen them replaced by synthetic alternatives. Highly effective adhesives found in the natural world are currently under investigation. For example, bioadhesives secreted by microbes and by marine molluscs and crustaceans are being researched with a view to biomimicry. Furthermore, thiolation of proteins and carbohydrates enables these polymers to covalently adhere especially to cysteine-rich subdomains of proteins such as keratins or mucus glycoproteins via disulfide bond formation. Thiolated chitosan and thiolated hyaluronic acid are used as bioadhesives in various medicinal products.
Bioadhesives in nature
Organisms may secrete bioadhesives for use in attachment, construction and obstruction, as well as in predation and defense. Examples include their use for:- Colonization of surfaces
- Mussel's byssal threads
- Tube building by polychaete worms, which live in underwater mounds
- Insect egg, larval or pupal attachment to surfaces, and insect mating plugs
- Host attachment by blood-feeding ticks
- Nest-building by some insects, and also by some fish
- Defense by Notaden frogs and by sea cucumbers
- Prey capture in spider webs and by velvet worms
Polyphenolic proteins
The small family of proteins that are sometimes referred to as polyphenolic proteins are produced by some marine invertebrates like the blue mussel, Mytilus edulis by some algae', and by the polychaete Phragmatopoma californica. These proteins contain a high level of a post-translationally modified—oxidized—form of tyrosine, L-3,4-dihydroxyphenylalanine as well as the disulfide form of cysteine. In the zebra mussel, two such proteins, Dpfp-1 and Dpfp-2, localize in the juncture between byssus threads and adhesive plaque. The presence of these proteins appear, generally, to contribute to stiffening of the materials functioning as bioadhesives. The presence of the dihydroxyphenylalanine-moiety arises from action of a tyrosine hydroxylase-type of enzyme; in vitro, it has been shown that the proteins can be cross-linked using a mushroom tyrosinase.Temporary adhesion
Organisms such as limpets and sea stars use suction and mucus-like slimes to create Stefan adhesion, which makes pull-off much harder than lateral drag; this allows both attachment and mobility. Spores, embryos and juvenile forms may use temporary adhesives to secure their initial attachment to surfaces favorable for colonization. Tacky and elastic secretions that act as pressure-sensitive adhesives, forming immediate attachments on contact, are preferable in the context of self-defense and predation. Molecular mechanisms include non-covalent interactions and polymer chain entanglement. Many biopolymers – proteins, carbohydrates, glycoproteins, and mucopolysaccharides – may be used to form hydrogels that contribute to temporary adhesion.Permanent adhesion
Many permanent bioadhesives are generated by a "mix to activate" process that involves hardening via covalent cross-linking. On non-polar surfaces the adhesive mechanisms may include van der Waals forces, whereas on polar surfaces mechanisms such as hydrogen bonding and binding to metal cations may allow higher sticking forces to be achieved.- Microorganisms use acidic polysaccharides
- Marine bacteria use carbohydrate exopolymers to achieve bond strengths to glass of up to 500 000 N/m2
- Marine invertebrates commonly employ protein-based glues for irreversible attachment. Some mussels achieve 800 000 N/m2 on polar surfaces and 30 000 N/m2 on non-polar surfaces these numbers are dependent on the environment, mussels in high predation environments have an increased attachment to substrates. In high predation environments it can require predators 140% more force to dislodge mussels
- Some algae and marine invertebrates use lecproteins that contain L-DOPA to effect adhesion
- Proteins in the oothecal foam of the mantis are cross-linked covalently by small molecules related to L-DOPA via a tanning reaction that is catalysed by catechol oxidase or polyphenol oxidase enzymes.
Applications
Bioadhesives are of commercial interest because they tend to be biocompatible, i.e. useful for biomedical applications involving skin or other body tissue. Some work in wet environments and under water, while others can stick to low surface energy – non-polar surfaces like plastic. In recent years, the synthetic adhesives industry has been impacted by environmental concerns and health and safety issues relating to hazardous ingredients, volatile organic compound emissions, and difficulties in recycling or re mediating adhesives derived from petrochemical feedstocks. Rising oil prices may also stimulate commercial interest in biological alternatives to synthetic adhesives.Shellac is an early example of a bioadhesive put to practical use. Additional examples now exist, with others in development:
- Commodity wood adhesive based on a bacterial exopolysaccharide
- USB PRF/Soy 2000, a commodity wood adhesive that is 50% soy hydrolysate and excels at finger-jointing green lumber
- Mussel adhesive proteins can assist in attaching cells to plastic surfaces in laboratory cell and tissue culture experiments
- The Notaden frog glue is under development for biomedical uses, e.g. as a surgical glue for orthopedic applications or as a hemostat
- Mucosal drug delivery applications. For example, films of mussel adhesive protein give comparable mucoadhesion to polycarbophil, a synthetic hydrogel used to achieve effective drug delivery at low drug doses. An increased residence time through adhesion to the mucosal surface, such as in the eye or the nose can lead to an improved absorption of the drug.
- Long-duration continuous imaging of diverse organs
- Direct chemical synthesis, e.g. incorporation of L-DOPA groups in synthetic polymers
- Fermentation of transgenic bacteria or yeasts that express bioadhesive protein genes
- Farming of natural organisms that secrete bioadhesive materials
Mucoadhesion