Biomimetics


Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from , life, and μίμησις, imitation, from μιμεῖσθαι, to imitate, from μῖμος, actor. A closely related field is bionics.
The Theory of Evolution is a feature of biological systems for over 3.8 billion years according to observed life appearance estimations. Theoretically evolving species with high performance using commonly found materials. Surfaces of solids interact with other surfaces and the environment and derive the properties of materials. Biological materials are highly organized from the molecular to the nano-, micro-, and macroscales, often in a hierarchical manner with intricate nanoarchitecture that ultimately makes up a myriad of different functional elements. Properties of materials and surfaces result from a complex interplay between surface structure and morphology and physical and chemical properties. Many materials, surfaces, and objects in general provide multifunctionality.
Various materials, structures, and devices have been fabricated for commercial interest by engineers, material scientists, chemists, and biologists, and for beauty, structure, and design by artists and architects. Nature has solved engineering problems such as self-healing abilities, environmental exposure tolerance and resistance, hydrophobicity, self-assembly, and harnessing solar energy. Economic impact of bioinspired materials and surfaces is significant, on the order of several hundred billion dollars per year worldwide.

History

One of the early examples of biomimicry was the study of birds and bats to enable human flight. Although never successful in creating a "flying machine", Leonardo da Vinci was a keen observer of the anatomy and flight of aves and mammals, and made numerous notes and sketches on his observations as well as sketches of "flying machines". The Wright Brothers, who succeeded in flying the first heavier-than-air aircraft in 1903, allegedly derived inspiration from observations of pigeons in flight.
File:Leonardo Design for a Flying Machine, c. 1488.jpg|thumb|200px|Leonardo da Vinci's design for a flying machine with wings based closely upon the structure of bat wings
During the 1950s, the American biophysicist and polymath Otto Schmitt developed the concept of "biomimetics". During his doctoral research, he developed the Schmitt trigger by studying the nerves in squid, attempting to engineer a device that replicated the biological system of nerve propagation. He continued to focus on devices that mimic natural systems and by 1957 he had perceived a converse to the standard view of biophysics at that time, a view he would come to call biomimetics.
In 1960, Jack E. Steele coined a similar term, bionics, at Wright-Patterson Air Force Base in Dayton, Ohio, where Otto Schmitt also worked. Steele defined bionics as "the science of systems which have some function copied from nature, or which represent characteristics of natural systems or their analogues". During a later meeting in 1963, Schmitt stated:
In 1969, Schmitt used the term "biomimetic" in the title one of his papers, and by 1974 it had found its way into Webster's Dictionary. Bionics entered the same dictionary earlier in 1960 as "a science concerned with the application of data about the functioning of biological systems to the solution of engineering problems". Bionic took on a different connotation when Martin Caidin referenced Jack Steele and his work in the novel Cyborg, which later resulted in the 1974 television series The Six Million Dollar Man and its spin-offs. The term bionic then became associated with "the use of electronically operated artificial body parts" and "having ordinary human powers increased by or as if by the aid of such devices". Because the term bionic took on the implication of supernatural strength, the scientific community in English speaking countries largely abandoned it.
The term biomimicry appeared as early as 1982. Biomimicry was popularized by scientist and author Janine Benyus in her 1997 book Biomimicry: Innovation Inspired by Nature. Biomimicry is defined in the book as a "new science that studies nature's models and then imitates or takes inspiration from these designs and processes to solve human problems". Benyus suggests looking to Nature as a "Model, Measure, and Mentor" and emphasizes sustainability as an objective of biomimicry.
The potential long-term impacts of biomimicry were quantified in a 2013 Fermanian Business & Economic Institute Report commissioned by the San Diego Zoo. The findings demonstrated the potential economic and environmental benefits of biomimicry, which can be further seen in Johannes-Paul Fladerer and Ernst Kurzmann's "managemANT" approach. This term, describes the usage of behavioural strategies of ants in economic and management strategies.

Bio-inspired technologies

Biomimetics could in principle be applied in many fields. Because of the diversity and complexity of biological systems, the number of features that might be imitated is large. Biomimetic applications are at various stages of development from technologies that might become commercially usable to prototypes. Murray's law, which in conventional form determined the optimum diameter of blood vessels, has been re-derived to provide simple equations for the pipe or tube diameter which gives a minimum mass engineering system.

Locomotion

design and flight techniques are being inspired by birds and bats. The aerodynamics of streamlined design of improved Japanese high speed train Shinkansen 500 Series were modelled after the beak of Kingfisher bird.
Biorobots based on the physiology and methods of locomotion of animals include BionicKangaroo which moves like a kangaroo, saving energy from one jump and transferring it to its next jump; Kamigami Robots, a children's toy, mimic cockroach locomotion to run quickly and efficiently over indoor and outdoor surfaces, and Pleobot, a shrimp-inspired robot to study metachronal swimming and the ecological impacts of this propulsive gait on the environment.

Biomimetic flying robots (BFRs)

BFRs take inspiration from flying mammals, birds, or insects. BFRs can have flapping wings, which generate the lift and thrust, or they can be propeller actuated. BFRs with flapping wings have increased stroke efficiencies, increased maneuverability, and reduced energy consumption in comparison to propeller actuated BFRs. Mammal and bird inspired BFRs share similar flight characteristics and design considerations. For instance, both mammal and bird inspired BFRs minimize edge fluttering and pressure-induced wingtip curl by increasing the rigidity of the wing edge and wingtips. Mammal and insect inspired BFRs can be impact resistant, making them useful in cluttered environments.
Mammal inspired BFRs typically take inspiration from bats, but the flying squirrel has also inspired a prototype. Examples of bat inspired BFRs include Bat Bot and the DALER. Mammal inspired BFRs can be designed to be multi-modal; therefore, they're capable of both flight and terrestrial movement. To reduce the impact of landing, shock absorbers can be implemented along the wings. Alternatively, the BFR can pitch up and increase the amount of drag it experiences. By increasing the drag force, the BFR will decelerate and minimize the impact upon grounding. Different land gait patterns can also be implemented.
Bird inspired BFRs can take inspiration from raptors, gulls, and everything in-between. Bird inspired BFRs can be feathered to increase the angle of attack range over which the prototype can operate before stalling. The wings of bird inspired BFRs allow for in-plane deformation, and the in-plane wing deformation can be adjusted to maximize flight efficiency depending on the flight gait. An example of a raptor inspired BFR is the prototype by Savastano et al. The prototype has fully deformable flapping wings and is capable of carrying a payload of up to 0.8 kg while performing a parabolic climb, steep descent, and rapid recovery. The gull inspired prototype by Grant et al. accurately mimics the elbow and wrist rotation of gulls, and they find that lift generation is maximized when the elbow and wrist deformations are opposite but equal.
Insect inspired BFRs typically take inspiration from beetles or dragonflies. An example of a beetle inspired BFR is the prototype by Phan and Park, and a dragonfly inspired BFR is the prototype by Hu et al. The flapping frequency of insect inspired BFRs are much higher than those of other BFRs; this is because of the aerodynamics of insect flight. Insect inspired BFRs are much smaller than those inspired by mammals or birds, so they are more suitable for dense environments. The prototype by Phan and Park took inspiration from the rhinoceros beetle, so it can successfully continue flight even after a collision by deforming its hindwings.

Biomimetic architecture

Living beings have adapted to a constantly changing environment during evolution through mutation, recombination, and selection. The core idea of the biomimetic philosophy is that nature's inhabitants including animals, plants, and microbes have the most experience in solving problems and have already found the most appropriate ways to last on planet Earth. Similarly, biomimetic architecture seeks solutions for building sustainability present in nature. While nature serves as a model, there are few examples of biomimetic architecture that aim to be nature positive.
The 21st century has seen a ubiquitous waste of energy due to inefficient building designs, in addition to the over-utilization of energy during the operational phase of its life cycle. In parallel, recent advancements in fabrication techniques, computational imaging, and simulation tools have opened up new possibilities to mimic nature across different architectural scales. As a result, there has been a rapid growth in devising innovative design approaches and solutions to counter energy problems. Biomimetic architecture is one of these multi-disciplinary approaches to sustainable design that follows a set of principles rather than stylistic codes, going beyond using nature as inspiration for the aesthetic components of built form but instead seeking to use nature to solve problems of the building's functioning and saving energy.