Beekeeping
Beekeeping is the maintenance of bee colonies, commonly in artificial beehives. Honey bees in the genus Apis are the most commonly kept species but other honey producing bees such as Melipona stingless bees are also kept. Beekeepers keep bees to collect honey and other products of the hive: beeswax, propolis, bee pollen, and royal jelly. Other sources of beekeeping income include pollination of crops, raising queens, and production of package bees for sale. Bee hives are kept in an apiary or "bee yard".
The earliest evidence of humans collecting honey are from Spanish caves paintings dated 6,000 BCE, however it is not until 3,100 BCE that there is evidence from Egypt of beekeeping being practiced.
In the modern era, beekeeping is often used for crop pollination and the collection of its by products, such as wax and propolis. The largest beekeeping operations are agricultural businesses but many small beekeeping operations are run as a hobby. As beekeeping technology has advanced, beekeeping has become more accessible, and urban beekeeping was described as a growing trend as of 2016. Some studies have found city-kept bees are healthier than those in rural settings because there are fewer pesticides and greater biodiversity in cities.
History
Early history
At least 10,000 years ago, humans began to attempt to maintain colonies of wild bees in artificial hives made from hollow logs, wooden boxes, pottery vessels, and woven straw baskets known as skeps. Depictions of humans collecting honey from wild bees date to 10,000 years ago. Beekeeping in pottery vessels began about 9,000 years ago in North Africa. Traces of beeswax have been found in potsherds throughout the Middle East beginning about 7,000 BCE. In the Borjomi region of Georgia, archaeologists discovered the world's oldest known honey, dating back approximately 5,500 years, highlighting Georgia's ancient beekeeping traditions and the ritual use of honey in burial practices. Domestication of bees is shown in Egyptian art from around 4,500 years ago. Simple hives and smoke were used, and honey was stored in jars, some of which were found in the tombs of pharaohs such as Tutankhamun. In the 18th century, European understanding of the colonies and biology of bees allowed the construction of the movable comb hive so honey could be harvested without destroying the entire colony.Honeybees were kept in Egypt from antiquity. On the walls of the sun temple of Nyuserre Ini from the Fifth Dynasty before 2,422 BCE, workers are depicted blowing smoke into hives as they remove honeycombs. Inscriptions detailing the production of honey are found on the tomb of Pabasa from the Twenty-sixth Dynasty, in which cylindrical hives are depicted along with people pouring honey into jars.
An inscription records the introduction of honey bees into the land of Suhum in Mesopotamia, where they were previously unknown:
The oldest archaeological finds directly relating to beekeeping have been discovered at Rehov, Israel, a Bronze and Iron Age archaeological site in the Jordan Valley. Thirty intact hives made of straw and unbaked clay were discovered in the ruins of the city, dating from about 900 BCE, by archaeologist Amihai Mazar. The hives were found in orderly rows, three high, in a manner that according to Mazar could have accommodated around 100 hives, held more than one million bees and had a potential annual yield of of honey and of beeswax, and are evidence an advanced honey industry in Tel Rehov, Israel 3,000 years ago.
In ancient Greece, in Crete and Mycenae, there existed a system of high-status apiculture that is evidenced by the finds of hives, smoking pots, honey extractors and other beekeeping paraphernalia in Knossos. Beekeeping was considered a highly valued industry controlled by beekeeping overseers—owners of gold rings depicting apiculture scenes rather than religious ones as they have been reinterpreted recently, contra Sir Arthur Evans.
Aspects of the lives of bees and beekeeping are discussed at length by Aristotle. Beekeeping was also documented by the Roman writers Virgil, Gaius Julius Hyginus, Varro, and Columella.
Beekeeping has been practiced in ancient China since antiquity. In a book written by Fan Li during the Spring and Autumn period are sections describing beekeeping, stressing the importance of the quality of the wooden box used and its effects on the quality of the honey. The Chinese word for honey mi was borrowed from proto-Tocharian *ḿət, cognate with English .
The ancient Maya domesticated a species of stingless bee, which they used for several purposes, including making balché, a mead-like alcoholic drink. By 300 BCE they had achieved the highest levels of stingless beekeeping practices in the world. The use of stingless bees is referred to as meliponiculture, which is named after bees of the tribe Meliponini such as Melipona quadrifasciata in Brazil. This variation of beekeeping still occurs today. For instance, in Australia, the stingless bee Tetragonula carbonaria is kept for the production of honey.
Scientific study of honey bees
European natural philosophers began to scientifically study bee colonies in the 18th century. Eminent among these scientists were Swammerdam, René Antoine Ferchault de Réaumur, Charles Bonnet and François Huber. Swammerdam and Réaumur were among the first to use a microscope and dissection to understand the internal biology of honey bees. Réaumur was among the first to construct a glass-walled observation hive to better observe activities inside hives. He observed queens laying eggs in open cells but did not know how queens were fertilized; the mating of a queen and drone had not yet been observed and many theories held queens were "self-fertile" while others believed a vapor or "miasma" emanating from the drones fertilized queens without physical contact. Huber was the first to prove by observation and experiment that drones physically inseminate queens outside the confines of the hive, usually a great distance away.Following Réaumur's design, Huber built improved glass-walled observation hives and sectional hives that could be opened like the leaves of a book. This allowed the inspection of individual wax combs and greatly improved direct observation of hive activity. Although he went blind before he was twenty, Huber employed a secretary named François Burnens to make daily observations, conduct experiment and keep accurate notes for more than twenty years. Huber confirmed a hive consists of one queen, who is the mother of every female worker and male drone in the colony. He was also the first to confirm mating with drones takes place outside hives and that queens are inseminated in successive matings with male drones, which occur high in the air at a great distance from the hive. Together, Huber and Burnens dissected bees under the microscope, and were among the first to describe the ovaries and spermatheca of queens, as well as the penis of male drones. Huber is regarded as "the father of modern bee-science" and his work Nouvelles Observations sur Les Abeilles revealed all of the basic scientific facts of the biology and ecology of honeybees.
Hive designs
Before the invention of the movable comb hive, the harvesting of honey frequently resulted in the destruction of the whole colony. The wild hive was broken into using smoke to quieten the bees. The honeycombs were pulled out and either immediately eaten whole or crushed, along with the eggs, larvae, and honey they held. A sieve or basket was used to separate the liquid honey from the demolished brood nest. In medieval times in northern Europe, although skeps and other containers were made to house bees, the honey and wax were still extracted after the bee colony was killed. This was usually accomplished by using burning sulfur to suffocate the colony without harming the honey within. It was impossible to replace old, dark-brown brood comb in which larval bees are constricted by layers of shed pupal skins.The movable frames of modern hives are considered to have been developed from the traditional basket top bar hives of Greece, which allowed the beekeeper to avoid killing the bees. The oldest evidence of their use dates to 1669, although it is probable their use is more than 3,000 years old.
File:Beekeeper with moveable comb hive.jpg|thumb|A beekeeper inspecting a hive frame from a Langstroth hive
Intermediate stages in the transition from older methods of beekeeping were recorded in 1768 by Thomas Wildman, who described advances over the destructive, skep-based method so bees no longer had to be killed to harvest their honey. Wildman fixed an array of parallel wooden bars across the top of a straw hive in diameter "so that there are in all seven bars of deal to which the bees fix their combs", foreshadowing future uses of movable-comb hives. He also described using such hives in a multi-story configuration, foreshadowing the modern use of supers: he added successive straw hives below and later removed the ones above when free of brood and filled with honey so the bees could be separately preserved at the harvest the following season. Wildman also described the use of hives with "sliding frames" in which the bees would build their comb.
Wildman's book acknowledges the advances in knowledge of bees made by Swammerdam, Maraldi, and de Réaumur—he includes a lengthy translation of Réaumur's account of the natural history of bees. Wildman also describes the initiatives of others in designing hives for the preservation of bees when taking the harvest, citing reports from Brittany in the 1750s due to the Comte de la Bourdonnaye. Another hive design was invented by Rev. John Thorley in 1744; the hive was placed in a bell jar that was screwed onto a wicker basket. The bees were free to move from the basket to the jar, and honey was produced and stored in the jar. The hive was designed to keep the bees from swarming as much as they would have in other hive designs.
In the 19th century, changes in beekeeping practice were completed through the development of the movable comb hive by the American Lorenzo Lorraine Langstroth, who was the first person to make practical use of Huber's earlier discovery of a specific spatial distance between the wax combs, later called the bee space, which bees do not block with wax but keep as a free passage. Having determined this bee space, which is commonly given as between, though up to has been found in populations in Ethiopia. Langstroth then designed a series of wooden frames within a rectangular hive box, carefully maintaining the correct space between successive frames. He found the bees would build parallel honeycombs in the box without bonding them to each other or to the hive walls. This enables the beekeeper to slide any frame out of the hive for inspection without harming the bees or the comb; and protecting the eggs, larvae and pupae in the cells. It also meant combs containing honey could be gently removed and the honey extracted without destroying the comb. The emptied honeycombs could then be returned intact to the bees for refilling. Langstroth's book The Hive and Honey-bee, describes his rediscovery of the bee space and the development of his patent movable comb hive. The invention and development of the movable comb hive enabled the growth of large-scale, commercial honey production in both Europe and the U.S.