Basalt
Basalt is an aphanitic extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron exposed at or very near the surface of a rocky planet or moon. More than 90% of all volcanic rock on Earth is basalt. Rapid-cooling, fine-grained basalt has the same chemical composition and mineralogy as slow-cooling, coarse-grained gabbro. The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System. For example, the bulk of the plains of Venus, which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows; and basalt is a common rock on the surface of Mars.
Molten basalt lava has a low viscosity due to its relatively low silica content, resulting in rapidly moving lava flows that can spread over great areas before cooling and solidifying. Flood basalts are thick sequences of many such flows that can cover hundreds of thousands of square kilometres and constitute the most voluminous of all volcanic formations.
Basaltic magmas within Earth are thought to originate from the upper mantle. The chemistry of basalts thus provides clues to processes deep in Earth's interior.
Definition and characteristics
Basalt is composed mostly of oxides of silicon, iron, magnesium, potassium, aluminum, titanium, and calcium. Geologists classify igneous rock by its mineral content whenever possible; the relative volume percentages of quartz, alkali feldspar, plagioclase, and feldspathoid are particularly important. An aphanitic igneous rock is classified as basalt when its QAPF fraction is composed of less than 10% feldspathoid and less than 20% quartz, and plagioclase makes up at least 65% of its feldspar content. This places basalt in the basalt/andesite field of the QAPF diagram. Basalt is further distinguished from andesite by its silica content of under 52%.It is often not practical to determine the mineral composition of volcanic rocks, due to their very small grain size, in which case geologists instead classify the rocks chemically, with particular emphasis on the total content of alkali metal oxides and silica ; in that context, basalt is defined as volcanic rock with a content of between 45% and 52% silica and no more than 5% alkali metal oxides. This places basalt in the B field of the TAS diagram. Such a composition is described as mafic.
Basalt is usually dark grey to black in colour, due to a high content of augite or other dark-coloured pyroxene minerals, but can exhibit a wide range of shading. Some basalts are quite light-coloured due to a high content of plagioclase; these are sometimes described as leucobasalts. It can be difficult to distinguish between lighter-colored basalt and andesite, so field researchers commonly use a rule of thumb for this purpose, classifying it as basalt if it has a color index of 35 or greater.
The physical properties of basalt result from its relatively low silica content and typically high iron and magnesium content. The average density of basalt is 2.9 g/cm3, compared, for example, to granite’s typical density of 2.7 g/cm3. The viscosity of basaltic magma is relatively low—around 104 to 105 cP—similar to the viscosity of ketchup, but that is still several orders of magnitude higher than the viscosity of water, which is about 1 cP).
Basalt is often porphyritic, containing larger crystals that formed before the extrusion event that brought the magma to the surface, embedded in a finer-grained matrix. These phenocrysts are usually made of augite, olivine, or a calcium-rich plagioclase, which have the highest melting temperatures of any of the minerals that can typically crystallize from the melt, and which are therefore the first to form solid crystals.
Basalt often contains vesicles; they are formed when dissolved gases bubble out of the magma as it decompresses during its approach to the surface; the erupted lava then solidifies before the gases can escape. When vesicles make up a substantial fraction of the volume of the rock, the rock is described as scoria.
The term basalt is at times applied to shallow intrusive rocks with a composition typical of basalt, but rocks of this composition with a phaneritic groundmass are more properly referred to either as diabase or—when they are more coarse-grained —as gabbro. Diabase and gabbro are thus the hypabyssal and plutonic equivalents of basalt.
During the Hadean, Archean, and early Proterozoic eons of Earth's history, the chemistry of erupted magmas was significantly different from what it is today, due to immature crustal and asthenosphere differentiation. The resulting ultramafic volcanic rocks, with silica contents below 45% and high magnesium oxide content, are usually classified as komatiites.
Etymology
The word "basalt" is ultimately derived from Late Latin basaltes, a misspelling of Latin basanites "very hard stone", which was imported from Ancient Greek βασανίτης, from βάσανος. The modern petrological term basalt, describing a particular composition of lava-derived rock, became standard because of its use by Georgius Agricola in 1546, in his work De Natura Fossilium. Agricola applied the term "basalt" to the volcanic black rock beneath the Bishop of Meissen's Stolpen castle, believing it to be the same as the "basaniten" described by Pliny the Elder in AD 77 in Natural History.Types
On Earth, most basalt is formed by decompression melting of the mantle. The high pressure in the upper mantle raises the melting point of mantle rock, so that almost all of the upper mantle is solid. However, mantle rock is ductile. When tectonic forces cause hot mantle rock to creep upwards, pressure on the ascending rock decreases, and this can lower its melting point enough for the rock to partially melt, producing basaltic magma.Decompression melting can occur in a variety of tectonic settings, including in continental rift zones, at mid-ocean ridges, above geological hotspots, and in back-arc basins. Basalt also forms in subduction zones, where mantle rock rises into a mantle wedge above the descending slab. The slab releases water vapor and other volatiles as it descends, which further lowers the melting point, further increasing the amount of decompression melting. Each tectonic setting produces basalt with its own distinctive characteristics.
- Tholeiitic basalt, which is relatively rich in iron and poor in alkali metals and aluminium, include most basalts of the ocean floor, most large oceanic islands, and continental flood basalts such as the Columbia River Plateau.
- *High- and low-titanium basalt rocks, which are sometimes classified based on their titanium content in High-Ti and Low-Ti varieties. High-Ti and Low-Ti basalt have been distinguished from each other in the Paraná and Etendeka traps and the Emeishan Traps.
- * Mid-ocean ridge basalt is a tholeiitic basalt that has almost exclusively erupted at ocean ridges; it is characteristically low in incompatible elements. Although all MORBs are chemically similar, geologists recognize that they vary significantly in how depleted they are in incompatible elements. When they are present in close proximity along mid-ocean ridges, that is seen as evidence for mantle inhomogeneity.
- **Enriched MORB is defined as MORB that is relatively undepleted in incompatible elements. It was once thought to be mostly located in hot spots along mid-ocean ridges, such as Iceland, but it is now known to be located in many other places along those ridges.
- **Normal MORB is defined as MORB that has an average amount of incompatible elements.
- **D-MORB, depleted MORB, is defined as MORB that is highly depleted in incompatible elements.
- Alkali basalt is relatively rich in alkali metals. It is silica-undersaturated and may contain feldspathoids, alkali feldspar, phlogopite, and kaersutite. Augite in alkali basalts is titanium-enriched augite; low-calcium pyroxenes are never present. They are characteristic of continental rifting and hotspot volcanism.
- High-alumina basalt has greater than 17% alumina and is intermediate in composition between tholeiitic basalt and alkali basalt. Its relatively alumina-rich composition is based on rocks without phenocrysts of plagioclase. These represent the low-silica end of the calc-alkaline magma series and are characteristic of volcanic arcs above subduction zones.
- Boninite is a high-magnesium form of basalt that is erupted generally in back-arc basins; it is distinguished by its low titanium content and trace-element composition.
- Ocean island basalts include both tholeiites and alkali basalts; the tholeiites predominate early in the eruptive history of the island. These basalts are characterized by elevated concentrations of incompatible elements, which suggests that their source mantle rock has produced little magma in the past.
Petrology
In tholeiitic basalt, pyroxene and calcium-rich plagioclase are common phenocryst minerals. Olivine may also be a phenocryst, and when present, may have rims of pigeonite. The groundmass contains interstitial quartz or tridymite or cristobalite. Olivine tholeiitic basalt has augite and orthopyroxene or pigeonite with abundant olivine, but olivine may have rims of pyroxene and is unlikely to be present in the groundmass.
Alkali basalts typically have mineral assemblages that lack orthopyroxene but contain olivine. Feldspar phenocrysts typically are labradorite to andesine in composition. Augite is rich in titanium compared to augite in tholeiitic basalt. Minerals such as alkali feldspar, leucite, nepheline, sodalite, phlogopite mica, and apatite may be present in the groundmass.
Basalt has high liquidus and solidus temperatures—values at the Earth's surface are near or above 1200 °C and near or below 1000 °C ; these values are higher than those of other common igneous rocks.
The majority of tholeiitic basalts are formed at approximately 50–100 km depth within the mantle. Many alkali basalts may be formed at greater depths, perhaps as deep as 150–200 km. The origin of high-alumina basalt continues to be controversial, with disagreement over whether it is a primary melt or derived from other basalt types by fractionation.