History of geometry


arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers.
Classic geometry was focused in compass and straightedge constructions. Geometry was revolutionized by Euclid, who introduced mathematical rigor and the axiomatic method still in use today. His book, The Elements is widely considered the most influential textbook of all time, and was known to all educated people in the West until the middle of the 20th century.
In modern times, geometric concepts have been generalized to a high level of abstraction and complexity, and have been subjected to the methods of calculus and abstract algebra, so that many modern branches of the field are barely recognizable as the descendants of early geometry.

Early geometry

The earliest recorded beginnings of geometry can be traced to early peoples, such as the ancient Indus Valley and ancient Babylonia from around 3000 BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles, areas, and volumes, which were developed to meet some practical need in surveying, construction, astronomy, and various crafts. Among these were some surprisingly sophisticated principles, and a modern mathematician might be hard put to derive some of them without the use of calculus and algebra. For example, both the Egyptians and the Babylonians were aware of versions of the Pythagorean theorem about 1500 years before Pythagoras and the Indian Sulba Sutras around 800 BC contained the first statements of the theorem; the Egyptians had a correct formula for the volume of a frustum of a square pyramid.

Egyptian geometry

The ancient Egyptians knew that they could approximate the area of a circle as follows:
Problem 50 of the Ahmes papyrus uses these methods to calculate the area of a circle, according to a rule that the area is equal to the square of 8/9 of the circle's diameter. This assumes that pi| is 4×2, with an error of slightly over 0.63 percent. This value was slightly less accurate than the calculations of the Babylonians, but was not otherwise surpassed until Archimedes' approximation of 211875/67441 = 3.14163, which had an error of just over 1 in 10,000.
Ahmes knew of the modern 22/7 as an approximation for, and used it to split a hekat, hekat x 22/x x 7/22 = hekat; however, Ahmes continued to use the traditional 256/81 value for for computing his hekat volume found in a cylinder.
Problem 48 involved using a square with side 9 units. This square was cut into a 3x3 grid. The diagonal of the corner squares were used to make an irregular octagon with an area of 63 units. This gave a second value for of 3.111...
The two problems together indicate a range of values for between 3.11 and 3.16.
Problem 14 in the Moscow Mathematical Papyrus gives the only ancient example finding the volume of a frustum of a pyramid, describing the correct formula:
where a and b are the base and top side lengths of the truncated pyramid and h is the height.

Babylonian geometry

The Babylonians may have known the general rules for measuring areas and volumes. They measured the circumference of a circle as three times the diameter and the area as one-twelfth the square of the circumference, which would be correct if π is estimated as 3. The volume of a cylinder was taken as the product of the base and the height, however, the volume of the frustum of a cone or a square pyramid was incorrectly taken as the product of the height and half the sum of the bases. The Pythagorean theorem was also known to the Babylonians. Also, there was a recent discovery in which a tablet used π as 3 and 1/8. The Babylonians are also known for the Babylonian mile, which was a measure of distance equal to about seven miles today. This measurement for distances eventually was converted to a time-mile used for measuring the travel of the Sun, therefore, representing time. There have been recent discoveries showing that ancient Babylonians may have discovered astronomical geometry nearly 1400 years before Europeans did.

Vedic India geometry

The Indian Vedic period had a tradition of geometry, mostly expressed in the construction of elaborate altars.
Early Indian texts on this topic include the Satapatha Brahmana and the Śulba Sūtras.
The Śulba Sūtras has been described as "the earliest extant verbal expression of the Pythagorean Theorem in the world, although it had already been known to the Old Babylonians." They make use of Pythagorean triples, which are particular cases of Diophantine equations.
According to mathematician S. G. Dani, the Babylonian cuneiform tablet Plimpton 322 written c. 1850 BC "contains fifteen Pythagorean triples with quite large entries, including which is a primitive triple, indicating, in particular, that there was sophisticated understanding on the topic" in Mesopotamia in 1850 BC. "Since these tablets predate the Sulbasutras period by several centuries, taking into account the contextual appearance of some of the triples, it is reasonable to expect that similar understanding would have been there in India." Dani goes on to say:
As the main objective of the Sulvasutras was to describe the constructions of altars and the geometric principles involved in them, the subject of Pythagorean triples, even if it had been well understood may still not have featured in the Sulvasutras. The occurrence of the triples in the Sulvasutras is comparable to mathematics that one may encounter in an introductory book on architecture or another similar applied area, and would not correspond directly to the overall knowledge on the topic at that time. Since, unfortunately, no other contemporaneous sources have been found it may never be possible to settle this issue satisfactorily.

Greek geometry

Thales and Pythagoras

of Miletus, was the first to whom deduction in mathematics is attributed. There are five geometric propositions for which he wrote deductive proofs, though his proofs have not survived. Pythagoras of Ionia, and later, Italy, then colonized by Greeks, may have been a student of Thales, and traveled to Babylon and Egypt. The theorem that bears his name may not have been his discovery, but he was probably one of the first to give a deductive proof of it. He gathered a group of students around him to study mathematics, music, and philosophy, and together they discovered most of what high school students learn today in their geometry courses. In addition, they made the profound discovery of incommensurable lengths and irrational numbers.

Plato

was a philosopher, highly esteemed by the Greeks. There is a story that he had inscribed above the entrance to his famous school, "Let none ignorant of geometry enter here." However, the story is considered to be untrue. Though he was not a mathematician himself, his views on mathematics had great influence. Mathematicians thus accepted his belief that geometry should use no tools but compass and straightedge – never measuring instruments such as a marked ruler or a protractor, because these were a workman's tools, not worthy of a scholar. This dictum led to a deep study of possible compass and straightedge constructions, and three classic construction problems: how to use these tools to trisect an angle, to construct a cube twice the volume of a given cube, and to construct a square equal in area to a given circle. The proofs of the impossibility of these constructions, finally achieved in the 19th century, led to important principles regarding the deep structure of the real number system. Aristotle, Plato's greatest pupil, wrote a treatise on methods of reasoning used in deductive proofs which was not substantially improved upon until the 19th century.

Hellenistic geometry

Euclid

, of Alexandria, probably a student at the Academy founded by Plato, wrote a treatise in 13 books, titled The Elements of Geometry, in which he presented geometry in an ideal axiomatic form, which came to be known as Euclidean geometry. The treatise is not a compendium of all that the Hellenistic mathematicians knew at the time about geometry; Euclid himself wrote eight more advanced books on geometry. We know from other references that Euclid's was not the first elementary geometry textbook, but it was so much superior that the others fell into disuse and were lost. He was brought to the university at Alexandria by Ptolemy I, King of Egypt.
The Elements began with definitions of terms, fundamental geometric principles, and general quantitative principles from which all the rest of geometry could be logically deduced. Following are his five axioms, somewhat paraphrased to make the English easier to read.
  1. Any two points can be joined by a straight line.
  2. Any finite straight line can be extended in a straight line.
  3. A circle can be drawn with any center and any radius.
  4. All right angles are equal to each other.
  5. If two straight lines in a plane are crossed by another straight line, and the interior angles between the two lines and the transversal lying on one side of the transversal add up to less than two right angles, then on that side of the transversal, the two lines extended will intersect.
Concepts, that are now understood as algebra, were expressed geometrically by Euclid, a method referred to as Greek geometric algebra.

Archimedes

, of Syracuse, Sicily, when it was a Greek city-state, was one of the most famous mathematicians of the Hellenistic period. He is known for his formulation of a hydrostatic principle and for his works on geometry, including Measurement of the Circle and On Conoids and Spheroids. His work On Floating Bodies is the first known work on hydrostatics, of which Archimedes is recognized as the founder. Renaissance translations of his works, including the ancient commentaries, were enormously influential in the work of some of the best mathematicians of the 17th century, notably René Descartes and Pierre de Fermat.