De architectura
De architectura is a treatise on architecture written by the Roman architect and military engineer Marcus Vitruvius Pollio and dedicated to his patron, the emperor Caesar Augustus, as a guide for building projects. As the only treatise on architecture to survive from antiquity, it has been regarded since the Renaissance as the first known book on architectural theory, as well as a major source on the canon of classical architecture.
It contains a variety of information on Greek and Roman buildings, as well as prescriptions for the planning and design of military camps, cities, and structures both large and small. Since Vitruvius wrote early in the Roman architectural revolution that saw the full development of cross vaulting, domes, concrete, and other innovations associated with Imperial Roman architecture, his ten books give little information on these distinctive innovations of Roman building design and technology.
From references to them in the text, it is known that there were at least a few illustrations in original copies, but perhaps only one of these survived in any medieval manuscript copy. This deficiency was remedied in 16th-century printed editions, which became illustrated with many large plates.
Copies were made during the Carolingian Renaissance, but little use was made of them until the 15th century, when the work became of great interest and influence, initially in Italy and then in the rest of Europe.
Origin and contents
Probably written between 30 and 20 BC, it combines the knowledge and views of many antique writers, Greek and Roman, on architecture, the arts, natural history and building technology. Vitruvius cites many authorities throughout the text, often praising Greek architects for their development of temple building and the orders, and providing key accounts of the origins of building in the primitive hut.The Roman author gives advice on the qualifications of an architect and on types of architectural drawing.
Though often cited for his famous "triad" of characteristics associated with architectureutilitas, firmitas and venustas the aesthetic principles that influenced later treatise writers were outlined in Book III. Derived partially from Latin rhetoric, Vitruvian terms for order, arrangement, proportion, and fitness for intended purposes have guided architects for centuries, and continue to do so.
The ten books or scrolls are organized as follows:
De architectura
Roman architects were skilled in engineering, art, and craftsmanship combined. Vitruvius was very much of this type, a fact reflected in De architectura. He covered a wide variety of subjects he saw as touching on architecture. This included many aspects that may seem irrelevant to modern eyes, ranging from mathematics to astronomy, meteorology, and medicine. In the Roman conception, architecture needed to take into account everything touching on the physical and intellectual life of man and his surroundings.
Vitruvius, thus, deals with many theoretical issues concerning architecture. For instance, in Book of De architectura, he advises architects working with bricks to familiarise themselves with pre-Socratic theories of matter so as to understand how their materials will behave. Book relates the abstract geometry of Plato to the everyday work of the surveyor. Astrology is cited for its insights into the organisation of human life, while astronomy is required for the understanding of sundials. Likewise, Vitruvius cites Ctesibius of Alexandria and Archimedes for their inventions, Aristoxenus for music, Agatharchus for theatre, and Varro for architecture.
Buildings
Vitruvius sought to address the ethos of architecture, declaring that quality depends on the social relevance of the artist's work, not on the form or workmanship of the work itself. Perhaps the most famous declaration from De architectura is one still quoted by architects: "Well building hath three conditions: firmness, commodity, and delight". This quote is taken from Sir Henry Wotton's version of 1624, and accurately translates the passage in the work, but English has changed since then, especially in regard to the word "commodity", and the tag may be misunderstood. In modern English it would read: "The ideal building has three elements; it is sturdy, useful, and beautiful."Vitruvius also studied human proportions and this part of his canones were later adopted and adapted in the famous drawing Homo Vitruvianus by Leonardo da Vinci.
Domestic architecture
While Vitruvius is fulsome in his descriptions of religious buildings, infrastructure and machinery, he gives a mixed message on domestic architecture. Similar to Aristotle, Vitruvius offers admiration for householders who built their own homes without the involvement of an architect. His ambivalence on domestic architecture is most clearly read in the opening paragraph of the Introduction to Book 6. Book 6 focuses exclusively on residential architecture but as architectural theorist Simon Weir has explained, instead of writing the introduction on the virtues of residences or the family or some theme related directly to domestic life; Vitruvius writes an anecdote about the Greek ethical principle of xenia: showing kindness to strangers.Roman technology
De architectura is important for its descriptions of many different machines used for engineering structures, such as hoists, cranes, and pulleys, as well as war machines such as catapults, ballistae, and siege engines. Vitruvius also described the construction of sundials and water clocks, and the use of an aeolipile as an experiment to demonstrate the nature of atmospheric air movements.Aqueducts and mills
Books,, and of De architectura form the basis of much of what is known about Roman technology, now augmented by archaeological studies of extant remains, such as the Pont du Gard in southern France. Numerous such massive structures occur across the former empire, a testament to the power of Roman engineering. Vitruvius's description of Roman aqueduct construction is short, but mentions key details especially for the way they were surveyed, and the careful choice of materials needed.His book would have been of assistance to Frontinus, a general who was appointed in the late 1st century AD to administer the many aqueducts of Rome. Frontinus wrote De aquaeductu, the definitive treatise on 1st-century Roman aqueducts, and discovered a discrepancy between the intake and supply of water caused by illegal pipes inserted into the channels to divert the water. The Roman Empire went far in exploiting water power, as the set of no fewer than 16 water mills at Barbegal in France demonstrates. The mills ground grain in a very efficient operation, and many other mills are now known, such as the much later Hierapolis sawmill.
Materials
Vitruvius described many different construction materials used for a wide variety of different structures, as well as such details as stucco painting. Cement, concrete, and lime received in-depth descriptions, the longevity of many Roman structures being mute testimony to their skill in building materials and design.He advised that lead should not be used to conduct drinking water, clay pipes being preferred. He comes to this conclusion in Book of De architectura after empirical observation of the apparent laborer illnesses in the plumbum foundries of his time. However, much of the water used by Rome and many other cities was very hard, minerals soon coated the inner surfaces of the pipes, so lead poisoning was reduced.
Vitruvius related the famous story about Archimedes and his detection of adulterated gold in a royal crown. When Archimedes realized the volume of the crown could be measured exactly by the displacement created in a bath of water, he ran into the street with the cry of "Eureka!", and the discovery enabled him to compare the density of the crown with pure gold. He showed the crown had been alloyed with silver, and the king was defrauded.
Dewatering machines
Vitruvius described the construction of the Archimedes' screw in Chapter 10, although did not mention Archimedes by name. It was a device widely used for raising water to irrigate fields and dewater mines. Other lifting machines mentioned in De architectura include the endless chain of buckets and the reverse overshot water-wheel. Remains of the water wheels used for lifting water have been discovered in old mines such as those at Rio Tinto in Spain and Dolaucothi in west Wales. One of the wheels from Rio Tinto is now in the British Museum, and one from the latter in the National Museum of Wales. The remains were discovered when these mines were reopened in modern mining attempts. They would have been used in a vertical sequence, with 16 such mills capable of raising water at least above the water table. Each wheel would have been worked by a miner treading the device at the top of the wheel, by using cleats on the outer edge. That they were using such devices in mines clearly implies that they were entirely capable of using them as water wheels to develop power for a range of activities, not just for grinding wheat, but also probably for sawing timber, crushing ores, fulling, and so on.Force pump
is credited with the invention of the force pump, which Vitruvius described as being built from bronze with valves to allow a head of water to be formed above the machine. The device is also described by Hero of Alexandria in his Pneumatica. The machine is operated by hand in moving a lever up and down. He mentioned its use for supplying fountains above a reservoir, although a more mundane use might be as a simple fire engine. One was found at Calleva Atrebatum in England, and another is on display at the British Museum. Their functions are not described, but they are both made in bronze, just as Vitruvius specified.Vitruvius also mentioned the several automatons Ctesibius invented, and intended for amusement and pleasure rather than serving a useful function.