Amphibian
Amphibians are ectothermic, anamniotic, four-limbed vertebrate animals that constitute the class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all tetrapods, but excluding the amniotes. All extant amphibians belong to the monophyletic subclass Lissamphibia, with three living orders: Anura, Urodela, and Gymnophiona. Evolved to be mostly semiaquatic, amphibians have adapted to inhabit a wide variety of habitats, with most species living in freshwater, wetland or terrestrial ecosystems. Their life cycle typically starts out as aquatic larvae with gills known as tadpoles, but some species have developed behavioural adaptations to bypass this.
Young amphibians generally undergo metamorphosis from an aquatic larval form with gills to an air-breathing adult form with lungs. Amphibians use their skin as a secondary respiratory interface, and some small terrestrial salamanders and frogs even lack lungs and rely entirely on their skin. They are superficially similar to reptiles like lizards, but unlike reptiles and other amniotes, require access to water bodies to breed. With their complex reproductive needs and permeable skins, amphibians are often ecological indicators to habitat conditions; in recent decades there has been a dramatic decline in amphibian populations for many species around the globe.
The earliest amphibians evolved in the Devonian period from tetrapodomorph sarcopterygians that evolved primitive lungs, which were helpful in adapting to dry land. They diversified and became ecologically dominant during the Carboniferous and Permian periods, but were later displaced in terrestrial environments by early reptiles and basal synapsids. The origin of modern lissamphibians, which first appeared during the Early Triassic, around 250 million years ago, has long been contentious. The most popular hypothesis is that they likely originated from temnospondyls, the most diverse group of prehistoric amphibians, during the Permian period. Another hypothesis is that they emerged from lepospondyls. A fourth group of lissamphibians, the Albanerpetontidae, became extinct around 2 million years ago.
The number of known amphibian species is approximately 8,000, of which nearly 90% are frogs. The smallest amphibian in the world is a frog from New Guinea with a length of just. The largest living amphibian is the South China giant salamander, but this is dwarfed by prehistoric temnospondyls such as Mastodonsaurus which could reach up to in length. The study of amphibians is called batrachology, while the study of both reptiles and amphibians is called herpetology.
Classification
The word amphibian is derived from the Ancient Greek term ἀμφίβιος, which means 'both kinds of life', ἀμφί meaning 'of both kinds' and βίος meaning 'life'. The term was initially used as a general adjective for animals that could live on land or in water, including seals and otters. Traditionally, the class Amphibia includes all tetrapod vertebrates that are not amniotes. Amphibia in its widest sense was divided into three subclasses, two of which are extinct:- Subclass Lepospondyli†
- Subclass Temnospondyli†
- Subclass Lissamphibia
- * Salientia : Early Triassic to present—7,360 current species in 53 families. Modern salientians are described via the name Anura.
- * Caudata : Late Triassic to present—764 current species in 9 families. Modern caudatans are described via the name Urodela.
- * Gymnophiona : Late Triassic to present—215 current species in 10 families. The name Apoda is also sometimes used for caecilians.
- *Allocaudata† Middle Jurassic – Early Pleistocene
With the phylogenetic classification, the taxon Labyrinthodontia has been discarded as it is a polyparaphyletic group without unique defining features apart from shared primitive characteristics. Classification varies according to the preferred phylogeny of the author and whether they use a stem-based or a node-based classification. Traditionally, amphibians as a class are defined as all tetrapods with a larval stage, while the group that includes the common ancestors of all living amphibians and all their descendants is called Lissamphibia. The phylogeny of Paleozoic amphibians is uncertain, and Lissamphibia may possibly fall within extinct groups, like the Temnospondyli or the Lepospondyli, and in some analyses even in the amniotes. This means that advocates of phylogenetic nomenclature have removed a large number of basal Devonian and Carboniferous amphibian-type tetrapod groups that were formerly placed in Amphibia in Linnaean taxonomy, and included them elsewhere under cladistic taxonomy. If the common ancestor of amphibians and amniotes is included in Amphibia, it becomes a paraphyletic group.
All modern amphibians are included in the subclass Lissamphibia, which is usually considered a clade, a group of species that have evolved from a common ancestor. The three modern orders are Anura, Caudata, and Gymnophiona. It has been suggested that salamanders arose separately from a temnospondyl-like ancestor, and even that caecilians are the sister group of the advanced reptiliomorph amphibians, and thus of amniotes. Although the fossils of several older proto-frogs with primitive characteristics are known, the oldest "true frog", with hopping adaptations is Prosalirus bitis, from the Early Jurassic Kayenta Formation of Arizona. It is anatomically very similar to modern frogs. The oldest known caecilians are Funcusvermis gilmorei and Eocaecilia micropodia, both from Arizona. The earliest salamander is Beiyanerpeton jianpingensis from the Late Jurassic of northeastern China.
Authorities disagree as to whether Salientia is a superorder that includes the order Anura, or whether Anura is a sub-order of the order Salientia. The Lissamphibia are traditionally divided into three orders, but an extinct salamander-like family, the Albanerpetontidae, is now considered part of Lissamphibia alongside the superorder Salientia. Furthermore, Salientia includes all three recent orders plus the Triassic proto-frog, Triadobatrachus.
Evolutionary history
The first major groups of amphibians developed in the Devonian period, around 370 million years ago, from lobe-finned fish which were similar to the modern coelacanth and lungfish. These ancient lobe-finned fish had evolved multi-jointed leg-like fins with digits that enabled them to crawl along the sea bottom. Some fish had developed primitive lungs that help them breathe air when the stagnant pools of the Devonian swamps were low in oxygen. They could also use their strong fins to hoist themselves out of the water and onto dry land if circumstances so required. Eventually, their bony fins would evolve into limbs and they would become the ancestors to all tetrapods, including modern amphibians, reptiles, birds, and mammals. Despite being able to crawl on land, many of these prehistoric tetrapodomorph fish still spent most of their time in the water. They had started to develop lungs, but still breathed predominantly with gills.Many examples of species showing transitional features have been discovered. Ichthyostega was one of the first primitive amphibians, with nostrils and more efficient lungs. It had four sturdy limbs, a neck, a tail with fins and a skull very similar to that of the lobe-finned fish, Eusthenopteron. Amphibians evolved adaptations that allowed them to stay out of the water for longer periods. Their lungs improved and their skeletons became heavier and stronger, better able to support the weight of their bodies on land. They developed "hands" and "feet" with five or more digits; the skin became more capable of retaining body fluids and resisting desiccation. The fish's hyomandibula bone in the hyoid region behind the gills diminished in size and became the stapes of the amphibian ear, an adaptation necessary for hearing on dry land. An affinity between the amphibians and the teleost fish is the multi-folded structure of the teeth and the paired supra-occipital bones at the back of the head, neither of these features being found elsewhere in the animal kingdom.
At the end of the Devonian period, the seas, rivers and lakes were teeming with life while the land was the realm of early plants and devoid of vertebrates, though some, such as Ichthyostega, may have sometimes hauled themselves out of the water. It is thought they may have propelled themselves with their forelimbs, dragging their hindquarters in a similar manner to that used by the elephant seal. In the early Carboniferous, the climate was relatively wet and warm. Extensive swamps developed with mosses, ferns, horsetails and calamites. Air-breathing arthropods evolved and invaded the land where they provided food for the carnivorous amphibians that began to adapt to the terrestrial environment. There were no other tetrapods on the land and the amphibians were at the top of the food chain, with some occupying ecological positions currently held by crocodiles. Though equipped with limbs and the ability to breathe air, most still had a long tapering body and strong tail. Others were the top land predators, sometimes reaching several metres in length, preying on the large insects of the period and the many types of fish in the water. They still needed to return to water to lay their shell-less eggs, and even most modern amphibians have a fully aquatic larval stage with gills like their fish ancestors. It was the development of the amniotic egg, which prevents the developing embryo from drying out, that enabled the reptiles to reproduce on land and which led to their dominance in the period that followed.
After the Carboniferous rainforest collapse amphibian dominance gave way to reptiles, and amphibians were further devastated by the Permian–Triassic extinction event. During the Triassic Period, the reptiles continued to out-compete the amphibians, leading to a reduction in both the amphibians' size and their importance in the biosphere. According to the fossil record, Lissamphibia, which includes all modern amphibians and is the only surviving lineage, may have branched off from the extinct groups Temnospondyli and Lepospondyli at some period between the Late Carboniferous and the Early Triassic. The relative scarcity of fossil evidence precludes precise dating, but the most recent molecular study, based on multilocus sequence typing, suggests a Late Carboniferous/Early Permian origin for extant amphibians.
The origins and evolutionary relationships between the three main groups of amphibians is a matter of debate. A 2005 molecular phylogeny, based on rDNA analysis, suggests that salamanders and caecilians are more closely related to each other than they are to frogs. It also appears that the divergence of the three groups took place in the Paleozoic or early Mesozoic, before the breakup of the supercontinent Pangaea and soon after their divergence from the lobe-finned fish. The briefness of this period, and the swiftness with which radiation took place, would help account for the relative scarcity of primitive amphibian fossils. There are large gaps in the fossil record, the discovery of the dissorophoid temnospondyl Gerobatrachus from the Early Permian in Texas in 2008 provided a missing link with many of the characteristics of modern frogs. Molecular analysis suggests that the frog–salamander divergence took place considerably earlier than the palaeontological evidence indicates. One study suggested that the last common ancestor of all modern amphibians lived about 315 million years ago, and that stereospondyl temnospondyls are the closest relatives to the caecilians. However, most studies support a single monophyletic origin of all modern amphibians within the dissorophoid temnospondyls.
As they evolved from lunged fish, amphibians had to make certain adaptations for living on land, including the need to develop new means of locomotion. In the water, the sideways thrusts of their tails had propelled them forward, but on land, quite different mechanisms were required. Their vertebral columns, limbs, limb girdles and musculature needed to be strong enough to raise them off the ground for locomotion and feeding. Terrestrial adults discarded their lateral line systems and adapted their sensory systems to receive stimuli via the medium of the air. They needed to develop new methods to regulate their body heat to cope with fluctuations in ambient temperature. They developed behaviours suitable for reproduction in a terrestrial environment. Their skins were exposed to harmful ultraviolet rays that had previously been absorbed by the water. The skin changed to become more protective and prevent excessive water loss.