Airship


An airship, dirigible balloon or dirigible is a type of aerostat aircraft that can navigate through the air flying under its own power. Aerostats use buoyancy from a lifting gas that is less dense than the surrounding air to achieve the lift needed to stay airborne.
In early dirigibles, the lifting gas used was hydrogen, due to its high lifting capacity and ready availability, but the inherent flammability led to several fatal accidents that rendered hydrogen airships obsolete. The alternative lifting gas, helium, is not flammable, but is rare and relatively expensive. Significant amounts were first discovered in the United States and for a while helium was only available for airship usage in North America. Most airships built since the 1960s have used helium, though some have used hot air.
The bulk of an airship consists of the lighter-than air envelope, which may either form the gasbag itself or contain a number of gas-filled cells. The engines, crew, and payload capacity necessary for the function of the airship are instead housed in the gondola, one or more enclosed platforms suspended below the envelope.
The main types of airship are non-rigid, semi-rigid and rigid airships. Non-rigid airships, often called "blimps", rely solely on internal gas pressure to maintain the envelope shape. Semi-rigid airships maintain their shape by internal pressure, but have some form of supporting structure, such as a fixed keel, attached to it. Rigid airships have an outer structural framework that maintains the shape and carries all structural loads, while the lifting gas is contained in one or more internal gasbags or cells. Rigid airships were first flown by Count Ferdinand von Zeppelin and the vast majority of rigid airships built were manufactured by the firm he founded, Luftschiffbau Zeppelin. As a result, rigid airships are often called zeppelins.
Airships were the first aircraft capable of controlled powered flight, and were most commonly used before the 1940s; their use decreased as their capabilities were surpassed by those of aeroplanes. Their decline was accelerated by a series of high-profile accidents, including the 1930 crash and burning of the British R101 in France, the 1933 and 1935 storm-related crashes of the twin airborne aircraft carrier U.S. Navy helium-filled rigids, the and USS Macon respectively, and the 1937 burning of the German hydrogen-filled Hindenburg. From the 1960s, helium airships have been used where the ability to hover for a long time outweighs the need for speed and manoeuvrability, such as advertising, tourism, camera platforms, geological surveys and aerial observation.

Terminology

Airship

During the pioneer years of aeronautics, terms such as "airship", "air-ship", "air ship" and "ship of the air" meant any kind of navigable or dirigible flying machine. In 1919 Frederick Handley Page was reported as referring to "ships of the air", with smaller passenger types as "air yachts". In the 1930s, large intercontinental flying boats were also sometimes referred to as "ships of the air" or "flying-ships". Nowadays the term "airship" is used only for powered, dirigible balloons, with sub-types being classified as rigid, semi-rigid or non-rigid. Semi-rigid architecture is the more recent, following advances in deformable structures and the exigency of reducing weight and volume of the airships. They have a minimal structure that keeps the shape jointly with overpressure of the gas envelope.

Aerostat

An aerostat is an aircraft that remains aloft using buoyancy or static lift, as opposed to the aerodyne, which obtains lift by moving through the air. Airships are a type of aerostat. The term aerostat has also been used to indicate a tethered or moored balloon as opposed to a free-floating balloon. Aerostats today are capable of lifting a payload of to an altitude of more than above sea level. They can also stay in the air for extended periods of time, particularly when powered by an on-board generator or if the tether contains electrical conductors. Due to this capability, aerostats can be used as platforms for telecommunication services. For instance, Platform Wireless International Corporation announced in 2001 that it would use a tethered airborne payload to deliver cellular phone service to a region in Brazil. The European Union's ABSOLUTE project was also reportedly exploring the use of tethered aerostat stations to provide telecommunications during disaster response.

Blimp

A blimp is a non-rigid aerostat. In British usage it refers to any non-rigid aerostat, including barrage balloons and other kite balloons, having a streamlined shape and stabilising tail fins. Some blimps may be powered dirigibles, as in early versions of the Goodyear Blimp. Later Goodyear dirigibles, though technically semi-rigid airships, have still been called "blimps" by the company.

Zeppelin

The term zeppelin originally referred to airships manufactured by the German Zeppelin Company, which built and operated the first rigid airships in the early years of the twentieth century. The initials LZ, for Luftschiff Zeppelin, usually prefixed their craft's serial identifiers.
Streamlined rigid airships are often referred to as "Zeppelins", because of the fame that this company acquired due to the number of airships it produced, although its early rival was the Parseval semi-rigid design.

Hybrid airship

Hybrid airships fly with a positive aerostatic contribution, usually equal to the empty weight of the system, and the variable payload is sustained by propulsion or aerodynamic contribution.

Classification

Airships are classified according to their method of construction into rigid, semi-rigid and non-rigid types.

Rigid

A rigid airship has a rigid framework covered by an outer skin or envelope. The interior contains one or more gasbags, cells or balloons to provide lift. Rigid airships are typically unpressurised and can be made to virtually any size. Most, but not all, of the German Zeppelin airships have been of this type.

Semi-rigid

A semi-rigid airship has some kind of supporting structure but the main envelope is held in shape by the internal pressure of the lifting gas. Typically the airship has an extended, usually articulated keel running along the bottom of the envelope to stop it kinking in the middle by distributing suspension loads into the envelope, while also allowing lower envelope pressures.

Non-rigid

Non-rigid airships are often called "blimps". Most, but not all, of the American Goodyear airships have been blimps.
A non-rigid airship relies entirely on internal gas pressure to retain its shape during flight. Unlike the rigid design, the non-rigid airship's gas envelope has no compartments. However, it still typically has smaller internal bags containing air. As altitude is increased, the lifting gas expands and air from the ballonets is expelled through valves to maintain the hull's shape. To return to sea level, the process is reversed: air is forced back into the ballonets by scooping air from the engine exhaust and using auxiliary blowers.

Construction

Envelope

The envelope is the structure which contains the buoyant gas. Envelopes in the early 19th century were made from goldbeater's skin, selected for its low weight, relatively high strength, and impermeability compared to paper or linen. By the 1920s, natural rubber treated with cotton became the predominant elastomer used in envelope construction. The natural rubber was succeeded by neoprene in the 1930s and Nylon and PET in the 1950s. A few airships have been metal-clad. The most successful of which is the Detroit ZMC-2, which logged 2265 hours of flight time from 1929 to 1941 before being scrapped, as it was considered too small for operational use on anti-submarine patrols.
The problem of the exact determination of the pressure on an airship envelope is still problematic and has fascinated major scientists such as Theodor Von Karman.
The envelope may contain ballonets, allowing adjustment of the density of the buoyant gas by adding or subtracting envelope volume.

Ballonet

A ballonet is an air bag inside the outer envelope of an airship which, when inflated, reduces the volume available for the lifting gas, making it more dense. Because air is also denser than the lifting gas, inflating the ballonet reduces the overall lift, while deflating it increases lift. In this way, the ballonet can be used to adjust the lift as required by controlling the buoyancy. By inflating or deflating ballonets strategically, the pilot can control the airship's altitude and attitude.
Ballonets may typically be used in non-rigid or semi-rigid airships, commonly with multiple ballonets located both fore and aft to maintain balance and to control the pitch of the airship.

Lifting gas

is generally hydrogen, helium or hot air.
Hydrogen gives the highest lift and is inexpensive and easily obtained, but is highly flammable and can detonate if mixed with air. Helium is completely non flammable, but gives lower performance- and is a rare element and much more expensive.
Thermal airships use a heated lifting gas, usually air, in a fashion similar to hot air balloons. The first to do so was flown in 1973 by the British company Cameron Balloons.

Gondola

Propulsion and control

Small airships carry their engine in their gondola. Where there were multiple engines on larger airships, these were placed in separate nacelles, termed power cars or engine cars. To allow asymmetric thrust to be applied for maneuvering, these power cars were mounted towards the sides of the envelope, away from the centre line gondola. This also raised them above the ground, reducing the risk of a propeller strike when landing. Widely spaced power cars were also termed wing cars, from the use of "wing" to mean being on the side of something, as in a theater, rather than the aerodynamic device. These engine cars carried a crew during flight who maintained the engines as needed, but who also worked the engine controls, throttle etc., mounted directly on the engine. Instructions were relayed to them from the pilot's station by a telegraph system, as on a ship.
If fuel is burnt for propulsion, then progressive reduction in the airship's overall weight occurs. In hydrogen airships, this is usually dealt with by simply venting cheap hydrogen lifting gas. In helium airships water is often condensed from the exhaust and stored as ballast.