20th century in science
advanced dramatically during the 20th century. There were new and radical developments in the physical, life and human sciences, building on the progress made in the 19th century.
The development of post-Newtonian theories in physics, such as special relativity, general relativity, and quantum mechanics led to the development of nuclear weapons. New models of the structure of the atom led to developments in theories of chemistry and the development of new materials such as nylon and plastics. Advances in biology led to large increases in food production, as well as the elimination of diseases such as polio.
A massive amount of new technologies were developed in the 20th century. Technologies such as electricity, the incandescent light bulb, the automobile and the phonography, first developed at the end of the 19th century, were perfected and universally deployed. The first airplane flight occurred in 1903, and by the end of the century large airplanes such as the Boeing 777 and Airbus A330 flew thousands of miles in a matter of hours. The development of the television and computers caused massive changes in the dissemination of information.
Astronomy and spaceflight
- A much better understanding of the evolution of the universe was achieved, its age was determined, and the Big Bang theory on its origin was proposed and generally accepted.
- The age of the Solar System, including Earth, was determined, and it turned out to be much older than believed earlier: more than 4 billion years, rather than the 20 million years suggested by Lord Kelvin in 1862.
- The planets of the Solar System and their moons were closely observed via numerous space probes. Pluto was discovered in 1930 on the edge of the Solar System, although in the early 21st century, it was reclassified as a dwarf planet instead of a planet proper, leaving eight planets.
- No trace of life was discovered on any of the other planets in the Solar System, although it remained undetermined whether some forms of primitive life might exist, or might have existed, somewhere. Extrasolar planets were observed for the first time.
- In 1969, Apollo 11 was launched towards the Moon and Neil Armstrong and Buzz Aldrin became the first persons from Earth to walk on another celestial body.
- That same year, Soviet astronomer Victor Safronov published his book Evolution of the protoplanetary cloud and formation of the Earth and the planets. In this book, almost all major problems of the planetary formation process were formulated and some of them solved. Safronov's ideas were further developed in the works of George Wetherill, who discovered runaway accretion.
- The Space Race between the United States and the Soviet Union gave a peaceful outlet to the political and military tensions of the Cold War, leading to the first human spaceflight with the Soviet Union's Vostok 1 mission in 1961, and man's first landing on another world—the Moon—with America's Apollo 11 mission in 1969. Later, the first space station was launched by the Soviet space program. The United States developed the first reusable spacecraft system with the Space Shuttle program, first launched in 1981. As the century ended, a permanent human presence in space was being founded with the ongoing construction of the International Space Station.
- In addition to human spaceflight, uncrewed space probes became a practical and relatively inexpensive form of exploration. The first orbiting space probe, Sputnik 1, was launched by the Soviet Union in 1957. Over time, a massive system of artificial satellites was placed into orbit around Earth. These satellites greatly advanced navigation, communications, military intelligence, geology, climate, and numerous other fields. Also, by the end of the 20th century, uncrewed probes had visited the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and various asteroids and comets. The Hubble Space Telescope, launched in 1990, greatly expanded the understanding of the Universe and brought brilliant images to TV and computer screens around the world.
Biology and medicine
- Genetics was unanimously accepted and significantly developed. The structure of DNA was determined in 1953 by James Watson, Francis Crick, Rosalind Franklin and Maurice Wilkins, following by developing techniques which allow to read DNA sequences and culminating in starting the Human Genome Project and cloning the first mammal in 1996.
- The role of sexual reproduction in evolution was understood, and bacterial conjugation was discovered.
- The convergence of various sciences for the formulation of the modern evolutionary synthesis, providing a widely accepted account of evolution.
- Placebo-controlled, randomized, blinded clinical trials became a powerful tool for testing new medicines.
- Antibiotics drastically reduced mortality from bacterial diseases and their prevalence.
- A vaccine was developed for polio, ending a worldwide epidemic. Effective vaccines were also developed for a number of other serious infectious diseases, including influenza, diphtheria, pertussis, tetanus, measles, mumps, rubella, chickenpox, hepatitis A, and hepatitis B.
- Epidemiology and vaccination led to the eradication of the smallpox virus in humans.
- X-rays became powerful diagnostic tool for wide spectrum of diseases, from bone fractures to cancer. In the 1960s, computerized tomography was invented. Other important diagnostic tools developed were sonography and magnetic resonance imaging.
- Development of vitamins virtually eliminated scurvy and other vitamin-deficiency diseases from industrialized societies.
- New psychiatric drugs were developed. These include antipsychotics for treating hallucinations and delusions, and antidepressants for treating depression.
- The role of tobacco smoking in the causation of cancer and other diseases was proven during the 1950s.
- New methods for cancer treatment, including chemotherapy, radiation therapy, and immunotherapy, were developed. As a result, cancer could often be cured or placed in remission.
- The development of blood typing and blood banking made blood transfusion safe and widely available.
- The invention and development of immunosuppressive drugs and tissue typing made organ and tissue transplantation a clinical reality.
- New methods for heart surgery were developed, including pacemakers and artificial hearts.
- Cocaine/crack and heroin were found to be dangerous addictive drugs, and their wide usage had been outlawed; mind-altering drugs such as LSD and MDMA were discovered and later outlawed. In many countries, a war on drugs caused prices to soar 10–20 times higher, leading to profitable black market drug dealing, and in some countries to prison inmate sentences being 80% related to drug use by the 1990s.
- Contraceptive drugs were developed, which reduced population growth rates in industrialized countries, as well as decreased the taboo of premarital sex throughout many western countries.
- The development of medical insulin during the 1920s helped raise the life expectancy of diabetics to three times of what it had been earlier.
- Vaccines, hygiene and clean water improved health and decreased mortality rates, especially among infants and the young.
Notable diseases
- An influenza pandemic, Spanish Flu, killed anywhere from 20 to 100 million people between 1918 and 1919.
- A new viral disease, called the Human Immunodeficiency Virus, or HIV, arose in Africa and subsequently killed millions of people throughout the world. HIV leads to a syndrome called Acquired Immunodeficiency Syndrome, or AIDS. Treatments for HIV remained inaccessible to many people living with AIDS and HIV in developing countries, and a cure has yet to be discovered.
- Because of increased life spans, the prevalence of cancer, Alzheimer's disease, Parkinson's disease, and other diseases of old age increased slightly.
- Sedentary lifestyles, due to labour-saving devices and technology, along with the increase in home entertainment and technology such as television, video games, and the internet contributed to an "epidemic" of obesity, at first in the rich countries, but by the end of the 20th century spreading to the developing world.
Chemistry
In 1905, Albert Einstein explained Brownian motion in a way that definitively proved atomic theory. Leo Baekeland invented bakelite, one of the first commercially successful plastics. In 1909, American physicist Robert Andrews Millikan – who had studied in Europe under Walther Nernst and Max Planck – measured the charge of individual electrons with unprecedented accuracy through the oil drop experiment, in which he measured the electric charges on tiny falling water droplets. His study established that any particular droplet's electrical charge is a multiple of a definite, fundamental value – the electron's charge – and thus a confirmation that all electrons have the same charge and mass. Beginning in 1912, he spent several years investigating and finally proving Albert Einstein's proposed linear relationship between energy and frequency, and providing the first direct photoelectric support for the Planck constant. In 1923 Millikan was awarded the Nobel Prize for Physics.
In 1909, S. P. L. Sørensen invented the pH concept and develops methods for measuring acidity. In 1911, Antonius Van den Broek proposed the idea that the elements on the periodic table are more properly organized by positive nuclear charge rather than atomic weight. In 1911, the first Solvay Conference was held in Brussels, bringing together most of the most prominent scientists of the day. In 1912, William Henry Bragg and William Lawrence Bragg proposed Bragg's law and established the field of X-ray crystallography, an important tool for elucidating the crystal structure of substances. In 1912, Peter Debye develops the concept of molecular dipole to describe asymmetric charge distribution in some molecules.
In 1913, Niels Bohr, a Danish physicist, introduced the concepts of quantum mechanics to atomic structure by proposing what is now known as the Bohr model of the atom, where electrons exist only in strictly defined circular orbits around the nucleus similar to rungs on a ladder. The Bohr Model is a planetary model in which the negatively charged electrons orbit a small, positively charged nucleus similar to the planets orbiting the Sun – the gravitational force of the solar system is mathematically akin to the attractive Coulomb force between the positively charged nucleus and the negatively charged electrons.
In 1913, Henry Moseley, working from Van den Broek's earlier idea, introduces concept of atomic number to fix inadequacies of Mendeleev's periodic table, which had been based on atomic weight. The peak of Frederick Soddy's career in radiochemistry was in 1913 with his formulation of the concept of isotopes, which stated that certain elements exist in two or more forms which have different atomic weights but which are indistinguishable chemically. He is remembered for proving the existence of isotopes of certain radioactive elements, and is also credited, along with others, with the discovery of the element protactinium in 1917. In 1913, J. J. Thomson expanded on the work of Wien by showing that charged subatomic particles can be separated by their mass-to-charge ratio, a technique known as mass spectrometry.
In 1916, Gilbert N. Lewis published his seminal article "The Atom of the Molecule", which suggested that a chemical bond is a pair of electrons shared by two atoms. Lewis's model equated the classical chemical bond with the sharing of a pair of electrons between the two bonded atoms. Lewis introduced the "electron dot diagrams" in this paper to symbolize the electronic structures of atoms and molecules. Now known as Lewis structures, they are discussed in virtually every introductory chemistry book. Lewis in 1923 developed the electron pair theory of acids and base: Lewis redefined an acid as any atom or molecule with an incomplete octet that was thus capable of accepting electrons from another atom; bases were, of course, electron donors. His theory is known as the concept of Lewis acids and bases. In 1923, G. N. Lewis and Merle Randall published Thermodynamics and the Free Energy of Chemical Substances, first modern treatise on chemical thermodynamics.
The 1920s saw a rapid adoption and application of Lewis's model of the electron-pair bond in the fields of organic and coordination chemistry. In organic chemistry, this was primarily due to the efforts of the British chemists Arthur Lapworth, Robert Robinson, Thomas Lowry, and Christopher Ingold; while in coordination chemistry, Lewis's bonding model was promoted through the efforts of the American chemist Maurice Huggins and the British chemist Nevil Sidgwick.