Baddeley's model of working memory
Baddeley's model of working memory is a model of human memory proposed by Alan Baddeley and Graham Hitch in 1974, in an attempt to present a more accurate model of primary memory. Working memory splits primary memory into multiple components, rather than considering it to be a single, unified construct.
Baddeley and Hitch proposed their three-part working memory model as an alternative to the short-term store in Atkinson and Shiffrin's 'multi-store' memory model. This model is later expanded upon by Baddeley and other co-workers to add a fourth component, and has become the dominant view in the field of working memory. However, alternative models are developing, providing a different perspective on the working memory system.
The original model of Baddeley & Hitch was composed of three main components: the central executive which acts as a supervisory system and controls the flow of information from and to its slave systems: the phonological loop and the visuo-spatial sketchpad. The phonological loop stores verbal content, whereas the visuo-spatial sketchpad caters to visuo-spatial data. Both slave systems only function as short-term storage centers.
Baddeley and Hitch's argument for the distinction of two domain-specific slave systems in the older model was derived from experimental findings with dual-task paradigms. Performance of two simultaneous tasks requiring the use of two separate perceptual domains is nearly as efficient as performance of the tasks individually. In contrast, when a person tries to carry out two tasks simultaneously that use the same perceptual domain, performance is less efficient than when performing the tasks individually.
A fourth component of Baddeley's model was added 25 years later to complement the central executive system. It was designated as episodic buffer. It is considered a limited-capacity system that provides temporary storage of information by conjoining information from the subsidiary systems, and long-term memory, into a single episodic representation.
Components
Central executive
The central executive is a flexible system responsible for the control and regulation of cognitive processes. It directs focus and targets information, making working memory and long-term memory work together. It can be thought of as a supervisory system that controls cognitive processes, making sure the short-term store is actively working, and intervenes when they go astray and prevents distractions.It has the following functions:
- Updating and coding incoming information and replacing old information
- Binding information from a number of sources into coherent episodes
- Coordination of the slave systems
- Shifting between tasks or retrieval strategies
- Inhibition, suppressing dominant or automatic responses
- Selective attention
Using the dual-task paradigm, Baddeley and Della Salla have found, for instance, that patients with Alzheimer's dementia are impaired when performing multiple tasks simultaneously, even when the difficulty of the individual tasks is adapted to their abilities. Two tasks include a memory tasks and a tracking task. Individual actions are completed well, but as the Alzheimer's becomes more prominent in a patient, performing two or more actions becomes more and more difficult. This research has shown the deteriorating of the central executive in individuals with Alzheimer's.
Recent research on executive functions suggests that the 'central' executive is not as central as conceived in the Baddeley & Hitch model. Rather, there seem to be separate executive functions that can vary largely independently between individuals and can be selectively impaired or spared by brain damage.
Phonological loop
The phonological loop as a whole deals with sound or phonological information. It consists of two parts: a short-term phonological store with auditory memory traces that are subject to rapid decay and an articulatory rehearsal component that can revive the memory traces.Any auditory verbal information is assumed to enter automatically into the phonological store. Visually presented language can be transformed into phonological code by silent articulation and thereby be encoded into the phonological store. This transformation is facilitated by the articulatory control process. The phonological store acts as an "inner ear", remembering speech sounds in their temporal order, whilst the articulatory process acts as an "inner voice" and repeats the series of words on a loop to prevent them from decaying. The phonological loop may play a key role in the acquisition of vocabulary, particularly in the early childhood years. It may also be vital for learning a second language.
Five main findings provide evidence for the phonological loop:
- The effect of phonological similarity:
- The effect of articulatory suppression:
- Transfer of information between codes:
- Neuropsychological evidence:
- On the other hand, patients with dysarthria, whose speech problems are secondary, show a normal capacity for rehearsal. This suggests that it is the subvocal rehearsing that is crucial.
Evidence in support of a phonological short-term store
Visuo-spatial working memory
The visuo-spatial sketchpad holds visual information for manipulation, and is thought to be its own storage of working memory in that it does not interfere with the short term processes of the phonological loop. In research, it has been found that the visuo-spatial sketchpad can work simultaneously with the phonological loop to process both auditory and visual stimuli without either of the processes affecting the efficacy of the other. Baddeley re-defined the theory of short-term memory as a working memory to explain this phenomenon. In the original theory of short-term memory, it is understood that a person only has one store of immediate information processing which could only hold a total of seven items plus or minus two items to be stored in a very short period of time, sometimes a matter of seconds. The digit-span test is a perfect example of a measurement for classically defined short-term memory. Essentially, if one is not able to encode the seven items within a few minutes by finding an existing association for the information to be transferred into long-term memory, then the information is lost and never encoded.However, visuo-spatial short-term memory can retain visual and/or spatial information over brief periods of time. When this memory is in use, individuals are able to momentarily create and revisit a mental image that can be manipulated in complex or difficult tasks of spatial orientation. There are some who have disparities in the areas of the brain that allow for this to happen from different types of brain damage. There can also be a misunderstanding here in the differences between transient memories such as the visual sensory memory. A transient memory is merely a fleeting type of sensory memory; therefore, as the visual sensory memory is a type of sensory memory, there is a store for the information, but the store lasts for only a second or so. A common effect of the visual sensory memory is that individuals may remember seeing things that weren't really there or not remembering particular things that were in their line of sight. The memory is only momentary, and if it isn't attended to within a matter of seconds, it is gone.
The sketchpad consists of the spatial short-term memory and the object memory. The spatial short-term memory is how one is able to learn and thus remember "where" objects are in comparative representation to other objects. The object memory is essential in learning and remembering "what" an object is. These two visual abilities differ in large part because of their different pathways in the brain. The visual pathway in the brain that detects spatial representation of a person to and within their environment is the dorsal stream. The visual pathway that determines objects shapes, sizes, colors and other definitive characteristics is called the ventral stream. Each of these two streams runs independent of one another so that the visual system may process one without the other or both simultaneously. The two streams do not depend on one another, so if one is functioning manipulatively, the other can still send its information through.