Wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy., hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels. One study claimed that, as of 2009 wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and the most favorable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas energy sources.
Smaller wind turbines are used for applications such as battery charging and remote devices such as traffic warning signs. Larger turbines can contribute to a domestic power supply while selling unused power back to the utility supplier via the electrical grid.
Wind turbines are manufactured in a wide range of sizes, with either horizontal or vertical axes, though horizontal is most common.
History
The windwheel of Hero of Alexandria marks one of the first recorded instances of wind powering a machine. However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia, from the 7th century. These panemone windmills were vertical-axle windmills, which had long vertical drive shafts with rectangular blades. Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.Wind power first appeared in Europe during the Middle Ages. The first historical records of their use in England date to the 11th and 12th centuries; there are reports of German crusaders taking their windmill-making skills to Syria around 1190. By the 14th century, Dutch windpumps were in use to drain areas of the Rhine delta. Advanced wind turbines were described by Croatian inventor Fausto Veranzio in his book Machinae Novae. He described vertical-axis wind turbines with curved or V-shaped blades.
The first electricity-generating wind turbine was installed by the Austrian Josef Friedländer at the Vienna International Electrical Exhibition in 1883. It was a Halladay wind turbine for driving a dynamo. Friedländer's diameter Halladay "wind motor" was supplied by U.S. Wind Engine & Pump Co. of Batavia, Illinois. The wind turbine drove a dynamo at ground level that fed electricity into a series of batteries. The batteries powered various electrical tools and lamps, as well as a threshing machine. Friedländer's wind turbine and its accessories were prominently installed at the north entrance to the main exhibition hall in the Vienna Prater.
In July 1887, Scottish academic James Blyth installed a battery-charging machine to light his holiday home in Marykirk, Scotland. Some months later, American inventor Charles F. Brush was able to build the first automatically operated wind turbine after consulting local University professors and his colleagues Jacob S. Gibbs and Brinsley Coleberd and successfully getting the blueprints peer-reviewed for electricity production. Although Blyth's turbine was considered uneconomical in the United Kingdom, electricity generation by wind turbines was more cost effective in countries with widely scattered populations.
In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 megawatts. The largest machines were on towers with four-bladed diameter rotors. By 1908, there were 72 wind-driven electric generators operating in the United States from 5 kilowatts to 25 kW. Around the time of World War I, American wind turbine makers were producing 100,000 each year, mostly for water-pumping.
By the 1930s, use of wind turbines in rural areas was declining as the distribution system extended to those areas.
A forerunner of modern horizontal-axis wind generators was in service at Yalta, USSR, in 1931. This was a 100 kW generator on a tower, connected to the local 6.3 kV distribution system. It was reported to have an annual capacity factor of 32 percent, not much different from current wind machines.
In the autumn of 1941, the first megawatt-class wind turbine was synchronized to a utility grid in Vermont. The Smith–Putnam wind turbine only ran for about five years before one of the blades snapped off. The unit was not repaired, because of a shortage of materials during the war.
The first utility grid-connected wind turbine to operate in the UK was built by John Brown & Company in 1951 in the Orkney Islands.
In the early 1970s, however, anti-nuclear protests in Denmark spurred artisan mechanics to develop microturbines of 22 kW despite declines in the industry. Organizing owners into associations and co-operatives led to the lobbying of the government and utilities and provided incentives for larger turbines throughout the 1980s and later. Local activists in Germany, nascent turbine manufacturers in Spain, and large investors in the United States in the early 1990s then lobbied for policies that stimulated the industry in those countries.
It has been argued that expanding the use of wind power will lead to increasing geopolitical competition over critical materials for wind turbines, such as rare earth elements neodymium, praseodymium, and dysprosium. However, this perspective has been critically dismissed for failing to relay how most wind turbines do not use permanent magnets and for underestimating the power of economic incentives for the expanded production of these minerals.
Wind power density
is a quantitative measure of wind energy available at any location. It is the mean power available per swept area of a turbine, and is calculated for different heights above ground. Calculation of wind power density includes the effect of wind velocity and air density.Wind turbines are classified by the wind speed they are designed for, from class I to class III, with A to C referring to the turbulence intensity of the wind.
| Class | Avg wind speed | Turbulence |
| IA | 10 | 16% |
| IB | 10 | 14% |
| IC | 10 | 12% |
| IIA | 8.5 | 16% |
| IIB | 8.5 | 14% |
| IIC | 8.5 | 12% |
| IIIA | 7.5 | 16% |
| IIIB | 7.5 | 14% |
| IIIC | 7.5 | 12% |
Efficiency
requires that the mass of air entering and exiting a turbine must be equal. Likewise, the conservation of energy requires the energy given to the turbine from incoming wind to be equal to that of the combination of the energy in the outgoing wind and the energy converted to electrical energy. Since outgoing wind will still possess some kinetic energy, there must be a maximum proportion of the input energy that is available to be converted to electrical energy. Accordingly, Betz's law gives the maximal achievable extraction of wind power by a wind turbine, known as Betz's coefficient, as of the rate at which the kinetic energy of the air arrives at the turbine.The maximum theoretical power output of a wind machine is thus times the rate at which kinetic energy of the air arrives at the effective disk area of the machine. If the effective area of the disk is A, and the wind velocity v, the maximum theoretical power output P is:
where ρ is the air density.
Wind-to-rotor efficiency are among the factors affecting the final price of wind power.
Further inefficiencies, such as gearbox, generator, and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases as the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines delivered 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.
Efficiency can decrease slightly over time, one of the main reasons being dust and insect carcasses on the blades, which alter the aerodynamic profile and essentially reduce the lift to drag ratio of the airfoil. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.
In general, more stable and constant weather conditions result in an average of 15% greater efficiency than that of a wind turbine in unstable weather conditions, thus allowing up to a 7% increase in wind speed under stable conditions. This is due to a faster recovery wake and greater flow entrainment that occur in conditions of higher atmospheric stability. However, wind turbine wakes have been found to recover faster under unstable atmospheric conditions as opposed to a stable environment.
Different materials have varying effects on the efficiency of wind turbines. In an Ege University experiment, three wind turbines, each with three blades with a diameter of one meter, were constructed with blades made of different materials: A glass and glass/carbon epoxy, glass/carbon, and glass/polyester. When tested, the results showed that the materials with higher overall masses had a greater friction moment and thus a lower power coefficient.
The air velocity is the major contributor to the turbine efficiency. This is the reason for the importance of choosing the right location. The wind velocity will be high near the shore because of the temperature difference between the land and the ocean. Another option is to place turbines on mountain ridges. The higher the wind turbine will be, the higher the wind velocity on average. A windbreak can also increase the wind velocity near the turbine.