Tyrosine kinase


A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.
Tyrosine kinases belong to a larger class of enzymes known as protein kinases which also attach phosphates to other amino acids such as serine and threonine. Phosphorylation of proteins by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity, such as cell division.
Protein kinases can become mutated, stuck in the "on" position, and cause unregulated growth of the cell, which is a necessary step for the development of cancer. Therefore, kinase inhibitors, such as imatinib and osimertinib, are often effective cancer treatments.
Most tyrosine kinases have an associated protein tyrosine phosphatase, which removes the phosphate group.

Reaction

Protein kinases are a group of enzymes that possess a catalytic subunit that transfers the gamma phosphate from nucleoside triphosphates to one or more amino acid residues in a protein substrate side-chain, resulting in a conformational change affecting protein function. The enzymes fall into two broad classes, characterised with respect to substrate specificity: serine/threonine-specific, and tyrosine-specific.

Function

Kinase is a large family of enzymes that are responsible for catalyzing the transfer of a phosphoryl group from a nucleoside triphosphate donor, such as ATP, to an acceptor molecule. Tyrosine kinases catalyze the phosphorylation of tyrosine residues in proteins. The phosphorylation of tyrosine residues in turn causes a change in the function of the protein that they are contained in.
Phosphorylation at tyrosine residues controls a wide range of properties in proteins such as enzyme activity, subcellular localization, and interaction between molecules. Furthermore, tyrosine kinases function in many signal transduction cascades wherein extracellular signals are transmitted through the cell membrane to the cytoplasm and often to the nucleus, where gene expression may be modified. Finally mutations can cause some tyrosine kinases to become constitutively active, a nonstop functional state that may contribute to initiation or progression of cancer.
Tyrosine kinases function in a variety of processes, pathways, and actions, and are responsible for key events in the body. The receptor tyrosine kinases function in transmembrane signaling, whereas tyrosine kinases within the cell function in signal transduction to the nucleus. Tyrosine kinase activity in the nucleus involves cell-cycle control and properties of transcription factors. In this way, in fact, tyrosine kinase activity is involved in mitogenesis, or the induction of mitosis in a cell; proteins in the cytosol and proteins in the nucleus are phosphorylated at tyrosine residues during this process. Cellular growth and reproduction may rely to some degree on tyrosine kinase. Tyrosine kinase function has been observed in the nuclear matrix, which comprises not the chromatin but rather the nuclear envelope and a “fibrous web” that serves to physically stabilize DNA. To be specific, Lyn, a type of kinase in the Src family that was identified in the nuclear matrix, appears to control the cell cycle. Src family tyrosine kinases are closely related but demonstrate a wide variety of functionality. Roles or expressions of Src family tyrosine kinases vary significantly according to cell type, as well as during cell growth and differentiation. Lyn and Src family tyrosine kinases in general have been known to function in signal transduction pathways. There is evidence that Lyn is localized at the cell membrane; Lyn is associated both physically and functionally with a variety of receptor molecules.
Fibroblasts – a type of cell that synthesizes the extracellular matrix and collagen and is involved in wound healing – that have been transformed by the polyomavirus possess higher tyrosine activity in the cellular matrix. Furthermore, tyrosine kinase activity has been determined to be correlated to cellular transformation. It has also been demonstrated that phosphorylation of a middle-T antigen on tyrosine is also associated with cell transformation, a change that is similar to cellular growth or reproduction.
The transmission of mechanical force and regulatory signals are quite fundamental in the normal survival of a living organism. Protein tyrosine kinase plays a role in this task, too. A protein tyrosine kinase called pp125, also referred to as focal adhesion kinase is likely at hand in the influence of cellular focal adhesions, as indicated by an immunofluorescent localization of FAK. Focal adhesions are macromolecular structures that function in the transmission of mechanical force and regulatory signals.
Cellular proliferation, as explained in some detail above, may rely in some part on tyrosine kinase. Tyrosine kinase function has been observed in the nuclear matrix. Lyn, the type of kinase that was the first to be discovered in the nuclear matrix, is part of Src family of tyrosine kinases, which can be contained in the nucleus of differentiating, calcium-provoked kertinocytes. Lyn, in the nuclear matrix, among the nuclear envelope and the “fibrous web” that physically stabilizes DNA, was found functioning in association with the matrix. Also, it appeared to be conditional to cell cycle. The contribution of the Lyn protein to the total tyrosine kinase activity within the nuclear matrix is unknown, however; because the Lyn was extracted only partially, an accurate measurement of its activity could not be managed. Indications, as such, are that, according to Vegesna et al., Lyn polypeptides are associated with tyrosine kinase activity in the nuclear matrix. The extracted Lyn was enzymatically active, offering support for this notion.
Yet another possible and probable role of protein tyrosine kinase is that in the event of circulatory failure and organ dysfunction caused by endotoxin in rats, where the effects of inhibitors tyrphostin and genistein are involved with protein tyrosine kinase. Signals in the surroundings received by receptors in the membranes of cells are transmitted into the cell cytoplasm. Transmembrane signaling due to receptor tyrosine kinases, according to Bae et al., relies heavily on interactions, for example, mediated by the SH2 protein domain; it has been determined via experimentation that the SH2 protein domain selectivity is functional in mediating cellular processes involving tyrosine kinase. Receptor tyrosine kinases may, by this method, influence growth factor receptor signaling. This is one of the more fundamental cellular communication functions metazoans.

Regulation

Major changes are sometimes induced when the tyrosine kinase enzyme is affected by other factors. One of the factors is a molecule that is bound reversibly by a protein, called a ligand. A number of receptor tyrosine kinases, though certainly not all, do not perform protein-kinase activity until they are occupied, or activated, by one of these ligands. Although more research indicates that receptors remain active within endosomes, it was once thought that endocytosis caused by ligands was the event responsible for the process in which receptors are inactivated. Activated receptor tyrosine kinase receptors are internalized in short time and are ultimately delivered to lysosomes, where they become work-adjacent to the catabolic acid hydrolases that partake in digestion. Internalized signaling complexes are involved in different roles in different receptor tyrosine kinase systems, the specifics of which were researched. In addition, ligands participate in reversible binding, with inhibitors binding non-covalently. Multivalency, which is an attribute that bears particular interest to some people involved in related scientific research, is a phenomenon characterized by the concurrent binding of several ligands positioned on one unit to several coinciding receptors on another. In any case, the binding of the ligand to its partner is apparent owing to the effects that it can have on the functionality of many proteins. Ligand-activated receptor tyrosine kinases, as they are sometimes referred to, demonstrate a unique attribute. Once a tyrosine receptor kinase is bonded to its ligand, it is able to bind to tyrosine kinase residing in the cytosol of the cell.

Erythrocytes

An example of this trigger-system in action is the process by which the formation of erythrocytes is regulated. Mammals possess this system, which begins in the kidneys where the developmental signal is manufactured. The developmental signal, also called a cytokine, is erythropoietin in this case. Erythropoietin's activity is initiated when hematopoietic cytokine receptors become activated. In erythrocyte regulation, erythropoietin is a protein containing 165 amino acids that plays a role in activating the cytoplasmic protein kinase JAK. The results of some newer research have also indicated that the aforementioned cytokine receptors function with members of the JAK tyrosine kinase family. The cytokine receptors activate the JAK kinases. This then results in the phosphorylation of several signaling proteins located in the cell membrane. This subsequently affects both the stimulation of ligand-mediated receptors and intracellular signaling pathway activation. Substrates for JAK kinases mediate some gene responses and more. The process is also responsible for mediating the production of blood cells. In this case, erythropoietin binds to the corresponding plasma membrane receptor, dimerizing the receptor. The dimer is responsible for activating the kinase JAK via binding. Tyrosine residues located in the cytoplasmic domain of the erythropoietin receptor are consequently phosphorylated by the activated protein kinase JAK. Overall, this is also how a receptor tyrosine kinase might be activated by a ligand to regulate erythrocyte formation.