Triboelectric effect
The triboelectric effect describes electric charge transfer between two objects when they contact or slide against each other. It can occur with different materials, such as the sole of a shoe on a carpet, or between two pieces of the same material. It is ubiquitous, and occurs with differing amounts of charge transfer for all solid materials. There is evidence that tribocharging can occur between combinations of solids, liquids and gases, for instance liquid flowing in a solid tube or an aircraft flying through air.
Often static electricity is a consequence of the triboelectric effect when the charge stays on one or both of the objects and is not conducted away. The term triboelectricity has been used to refer to the field of study or the general phenomenon of the triboelectric effect, or to the static electricity that results from it. When there is no sliding, tribocharging is sometimes called contact electrification, and any static electricity generated is sometimes called contact electricity. The terms are often used interchangeably, and may be confused.
Triboelectric charge plays a major role in industries such as packaging of pharmaceutical powders, and in many processes such as dust storms and planetary formation. It can also increase friction and adhesion. While many aspects of the triboelectric effect are now understood and extensively documented, significant disagreements remain in the current literature about the underlying details.
History
The historical development of triboelectricity is interwoven with work on static electricity and electrons themselves. Experiments involving triboelectricity and static electricity occurred well before the discovery of the electron. The name ēlektron is Greek for amber, which is connected to the recording of electrostatic charging by Thales of Miletus around 585 BC, and possibly others even earlier. The prefix refers to sliding, friction and related processes, as in tribology.From the axial age the attraction of materials due to static electricity by rubbing amber and the attraction of magnetic materials were considered to be similar or the same. There are indications that it was known both in Europe and outside, for instance China and other places. Syrian women used amber whorls in weaving and exploited the triboelectric properties, as noted by Pliny the Elder.
The effect was mentioned in records from the medieval period. Archbishop Eustathius of Thessalonica, Greek scholar and writer of the 12th century, records that Woliver, king of the Goths, could draw sparks from his body. He also states that a philosopher was able, while dressing, to draw sparks from his clothes, similar to the report by Robert Symmer of his silk stocking experiments, which may be found in the 1759 Philosophical Transactions.
It is generally considered that the first major scientific analysis was by William Gilbert in his publication De Magnete in 1600. He discovered that many more materials than amber such as sulphur, wax, glass could produce static electricity when rubbed, and that moisture prevented electrification. Others such as Sir Thomas Browne made important contributions slightly later, both in terms of materials and the first use of the word electricity in Pseudodoxia Epidemica. He noted that metals did not show triboelectric charging, perhaps because the charge was conducted away. An important step was around 1663 when Otto von Guericke invented a machine that could automate triboelectric charge generation, making it much easier to produce more tribocharge; other electrostatic generators followed. For instance, shown in the Figure is an electrostatic generator built by Francis Hauksbee the Younger. Another key development was in the 1730s when C. F. du Fay pointed out that there were two types of charge which he named vitreous and resinous. These names corresponded to the glass rods and bituminous coal, amber, or sealing wax used in du Fay's experiments. These names were used throughout the 19th century. The use of the terms positive and negative for types of electricity grew out of the independent work of Benjamin Franklin around 1747 where he ascribed electricity to an over- or under- abundance of an electrical fluid.
At about the same time Johan Carl Wilcke published in his 1757 PhD thesis a triboelectric series. In this work, materials were listed in order of the polarity of charge separation when they are touched or slide against another. A material towards the bottom of the series, when touched to a material near the top of the series, will acquire a more negative charge.
The first systematic analysis of triboelectricity is considered to be the work of Jean Claude Eugène Péclet in 1834. He studied triboelectric charging for a range of conditions such as the material, pressure and rubbing of surfaces. It was some time before there were further quantitative works by Owen in 1909 and Jones in 1915. The most extensive early set of experimental analyses was from 1914–1930 by the group of Professor Shaw, who laid much of the foundation of experimental knowledge. In a series of papers he: was one of the first to mention some of the failings of the triboelectric series, also showing that heat had a major effect on tribocharging; analyzed in detail where different materials would fall in a triboelectric series, at the same time pointing out anomalies; separately analyzed glass and solid elements and solid elements and textiles, carefully measuring both tribocharging and friction; analyzed charging due to air-blown particles; demonstrated that surface strain and relaxation played a critical role for a range of materials, and examined the tribocharging of many different elements with silica.
Much of this work predates an understanding of solid state variations of energies levels with position, and also band bending. It was in the early 1950s in the work of authors such as Vick that these were taken into account along with concepts such as quantum tunnelling and behavior such as Schottky barrier effects, as well as including models such as asperities for contacts based upon the work of Frank Philip Bowden and David Tabor.
Basic characteristics
Triboelectric charging occurs when two materials are brought into contact then separated, or slide against each other. An example is rubbing a plastic pen on a shirt sleeve made of cotton, wool, polyester, or the blended fabrics used in modern clothing. An electrified pen will attract and pick up pieces of paper less than a square centimeter, and will repel a similarly electrified pen. This repulsion is detectable by hanging both pens on threads and setting them near one another. Such experiments led to the theory of two types of electric charge, one being the negative of the other, with a simple sum respecting signs giving the total charge. The electrostatic attraction of the charged plastic pen to neutral uncharged pieces of paper is due to induced dipoles in the paper.The triboelectric effect can be unpredictable because many details are often not controlled. Phenomena which do not have a simple explanation have been known for many years. For instance, as early as 1910, Jaimeson observed that for a piece of cellulose, the sign of the charge depended on whether it was bent concave or convex during rubbing. The same behavior with curvature was reported in 1917 by Shaw, who noted that the effect of curvature with different materials made them either more positive or negative. In 1920, Richards pointed out that for colliding particles the velocity and mass played a role, not just what the materials were. In 1926, Shaw pointed out that with two pieces of identical material, the sign of the charge transfer from "rubber" to "rubbed" could change with time.
There are other more recent experimental results which also do not have a simple explanation. For instance the work of Burgo and Erdemir, which showed that the sign of charge transfer reverses between when a tip is pushing into a substrate versus when it pulls out; the detailed work of Lee et al. and Forward, Lacks and Sankaran and others measuring the charge transfer during collisions between particles of zirconia of different size but the same composition, with one size charging positive, the other negative; the observations using sliding or Kelvin probe force microscope of inhomogeneous charge variations between nominally identical materials.
The details of how and why tribocharging occurs are not established science as of 2023. One component is the difference in the work function between the two materials. This can lead to charge transfer as, for instance, analyzed by Harper. As has been known since at least 1953, the contact potential is part of the process but does not explain many results, such as the ones mentioned in the last two paragraphs. Many studies have pointed out issues with the work function difference as a complete explanation. There is also the question of why sliding is often important. Surfaces have many nanoscale asperities where the contact is taking place, which has been taken into account in many approaches to triboelectrification. Alessandro Volta and Hermann von Helmholtz suggested that the role of sliding was to produce more contacts per second. In modern terms, the idea is that electrons move many times faster than atoms, so the electrons are always in equilibrium when atoms move. With this approximation, each asperity contact during sliding is equivalent to a stationary one; there is no direct coupling between the sliding velocity and electron motion. An alternative view is that sliding acts as a quantum mechanical pump which can excite electrons to go from one material to another. A different suggestion is that local heating during sliding matters, an idea first suggested by Frenkel in 1941. Other papers have considered that local bending at the nanoscale produces voltages which help drive charge transfer via the flexoelectric effect. There are also suggestions that surface or trapped charges are important. More recently there have been attempts to include a full solid state description.