Chlorpromazine
Chlorpromazine, marketed under the brand names Thorazine and Largactil among others, is an antipsychotic medication. It is primarily used to treat psychotic disorders such as schizophrenia. Other uses include the treatment of bipolar disorder, severe behavioral problems in children including those with attention deficit hyperactivity disorder, nausea and vomiting, anxiety before surgery, and hiccups that do not improve following other measures. It can be given orally, by intramuscular injection, or intravenously.
Chlorpromazine is in the typical antipsychotic class, and, chemically, is one of the phenothiazines. Its mechanism of action is not entirely clear but is believed to be related to its ability as a dopamine antagonist. It has antiserotonergic and antihistaminergic properties.
Common side effects include movement problems, sleepiness, dry mouth, low blood pressure upon standing, and increased weight. Serious side effects may include the potentially permanent movement disorder tardive dyskinesia, neuroleptic malignant syndrome, severe lowering of the seizure threshold, and low white blood cell levels. In older people with psychosis as a result of dementia, it may increase the risk of death. It is unclear if it is safe for use in pregnancy.
Chlorpromazine was developed in 1950 and was the first antipsychotic on the market. It is on the World Health Organization's List of Essential Medicines. Its introduction has been labeled as one of the great advances in the history of psychiatry. It is available as a generic medication.
Medical uses
Chlorpromazine is used in the treatment of both acute and chronic psychoses, including schizophrenia and the manic phase of bipolar disorder, as well as amphetamine-induced psychosis.Controversially, some psychiatric patients may be given chlorpromazine by force, even if they do not suffer any of the typical conditions the drug is prescribed for.
In a 2013 comparison of fifteen antipsychotics in schizophrenia, chlorpromazine demonstrated mild-standard effectiveness. It was 13% more effective than lurasidone and iloperidone, approximately as effective as ziprasidone and asenapine, and 12–16% less effective than haloperidol, quetiapine, and aripiprazole.
A 2014 systematic review carried out by Cochrane included 55 trials that compared the effectiveness of chlorpromazine versus placebo for the treatment of schizophrenia. Compared to the placebo group, patients under chlorpromazine experienced less relapse during 6 months to 2 years follow-up. No difference was found between the two groups beyond two years of follow-up. Patients under chlorpromazine showed a global improvement in symptoms and functioning. The systematic review also highlighted the fact that the side effects of the drug were 'severe and debilitating', including sedation, considerable weight gain, a lowering of blood pressure, and an increased risk of acute movement disorders. They also noted that the quality of evidence of the 55 included trials was very low and that 315 trials could not be included in the systematic review due to their poor quality. They called for further research on the subject, as chlorpromazine is a cheap benchmark drug and one of the most used treatments for schizophrenia worldwide.
Chlorpromazine has also been used in porphyria and as part of tetanus treatment. It is still recommended for short-term management of severe anxiety and psychotic aggression. Resistant and severe hiccups, severe nausea/emesis, and preanesthetic conditioning are other uses. Symptoms of delirium in hospitalized AIDS patients have been effectively treated with low doses of chlorpromazine.
Other uses
Chlorpromazine is occasionally used off-label for treatment of severe migraine. It is often, particularly as palliation, used in small doses to reduce nausea by opioid-treated cancer patients and to intensify and prolong the analgesia of the opioids as well. Efficacy has been shown in treatment of symptomatic hypertensive emergency.In Germany, chlorpromazine still carries label indications for insomnia, severe pruritus, and preanesthesia.
Chlorpromazine has been used as a hallucinogen antidote or "trip killer" to block the effects of serotonergic psychedelics like psilocybin, lysergic acid diethylamide, and mescaline. However, it was said to not be completely effective and could exacerbate symptoms under certain situations. The results of clinical studies of chlorpromazine for this use have been inconsistent, with reduced effects, no change in effects, and even enhanced effects all reported. Intravenous chlorpromazine is described as completely abolishing the autonomic and psychoactive effects of LSD, whereas oral chlorpromazine is said to be much less effective.
Chlorpromazine and other phenothiazines have been demonstrated to possess antimicrobial properties, but are not currently used for this purpose except for a very small number of cases. For example, Miki et al. 1992 trialed daily doses of chlorpromazine, reversing chloroquine resistance in Plasmodium chabaudi isolates in mice. Weeks et al., 2018 find that it also possesses a wide spectrum anthelmintic effect.
Chlorpromazine is an antagonist of several insect monoamine receptors. It is the most active antagonist known of silk moth octopamine receptor α, intermediate for Bm tyramine receptors 1 & 2, weak for Drosophila octopamine receptor β, high for Drosophila tyramine receptor 1, intermediate for migratory locust tyramine receptor 1, and high for American cockroach octopamine receptor α and tyramine receptor 1.
Contraindications
Absolute contraindications include:- Circulatory depression
- CNS depression
- Coma
- Drug intoxication
- Bone marrow suppression
- Phaeochromocytoma
- Hepatic failure
- Active liver disease
- Previous hypersensitivity to phenothiazines, especially chlorpromazine, or any of the excipients in the formulation being used.
Very rarely, elongation of the QT interval, due to hERG blockade, may occur, increasing the risk of potentially fatal arrhythmias.
Adverse effects
There appears to be a dose-dependent risk for seizures with chlorpromazine treatment. Tardive dyskinesia and akathisia are less commonly seen with chlorpromazine than they are with high potency typical antipsychotics such as haloperidol or trifluoperazine, and some evidence suggests that, with conservative dosing, the incidence of such effects for chlorpromazine may be comparable to that of newer agents such as risperidone or olanzapine.Chlorpromazine may deposit in ocular tissues when taken in high dosages for long periods of time.
Discontinuation
The British National Formulary recommends a gradual withdrawal when discontinuing antipsychotics to avoid acute withdrawal syndrome or rapid relapse. Symptoms of withdrawal commonly include nausea, vomiting, and loss of appetite. Other symptoms may include restlessness, increased sweating, and trouble sleeping. Less commonly, there may be a feeling of the world spinning, numbness, or muscle pains. Symptoms generally resolve after a short period of time.There is tentative evidence that discontinuation of antipsychotics can result in psychosis. It may also result in reoccurrence of the condition that is being treated. Rarely, tardive dyskinesia can occur when the medication is stopped.
Interactions
Consuming food prior to taking chlorpromazine orally limits its absorption; likewise, cotreatment with benztropine can also reduce chlorpromazine absorption. Alcohol can also reduce chlorpromazine absorption. Antacids slow chlorpromazine absorption. Lithium and chronic treatment with barbiturates can increase chlorpromazine clearance significantly. Tricyclic antidepressants can decrease chlorpromazine clearance and hence increase chlorpromazine exposure. Cotreatment with CYP1A2 inhibitors like ciprofloxacin, fluvoxamine or vemurafenib can reduce chlorpromazine clearance and hence increase exposure and potentially also adverse effects. Chlorpromazine can also potentiate the CNS depressant effects of drugs like barbiturates, benzodiazepines, opioids, lithium and anesthetics and hence increase the potential for adverse effects such as respiratory depression and sedation.Chlorprozamine is also a moderate inhibitor of CYP2D6 and a substrate for CYP2D6 and hence can inhibit its own metabolism. It can also inhibit the clearance of CYP2D6 substrates such as dextromethorphan, potentiating their effects. Other drugs like codeine and tamoxifen, which require CYP2D6-mediated activation into their respective active metabolites, may have their therapeutic effects attenuated. Likewise, CYP2D6 inhibitors such as paroxetine or fluoxetine can reduce chlorpromazine clearance, increasing serum levels of chlorpromazine and potentially its adverse effects. Chlorpromazine also reduces phenytoin levels and increases valproic acid levels. It also reduces propranolol clearance and antagonizes the therapeutic effects of antidiabetic agents, levodopa, amphetamines and anticoagulants. It may also interact with anticholinergic drugs such as orphenadrine to produce hypoglycaemia.
Chlorpromazine may also interact with epinephrine to produce a paradoxical fall in blood pressure. Monoamine oxidase inhibitors and thiazide diuretics may also accentuate the orthostatic hypotension experienced by those receiving chlorpromazine treatment. Quinidine may interact with chlorpromazine to increase myocardial depression. Likewise, it may also antagonize the effects of clonidine and guanethidine. It also may reduce the seizure threshold and hence a corresponding titration of anticonvulsant treatments should be considered. Prochlorperazine and desferrioxamine may also interact with chlorpromazine to produce transient metabolic encephalopathy.
Other drugs that prolong the QT interval, such as quinidine, verapamil, amiodarone, sotalol and methadone, may also interact with chlorpromazine to produce additive QT interval prolongation.
Chlorpromazine is a serotonin 5-HT2A receptor antagonist and has been found to reduce the hallucinogenic effects of serotonergic psychedelics like LSD.