Anthelmintic
Anthelmintics, anthelminthics, antihelmintics or antihelminthics are a group of antiparasitic drugs that expel parasitic worms and other internal parasites from the body by either stunning or killing them without causing significant damage to the host. They may also be called vermifuges or vermicides. Anthelmintics are used to treat people who are infected by helminths, a condition called helminthiasis. These drugs are also used to treat infected animals, particularly small ruminants such as goats and sheep.
Anthelmintic medication is also used in mass deworming campaigns of school-aged children in many developing countries. Anthelmintics are also used for mass deworming of livestock. The drugs of choice for soil-transmitted helminths are mebendazole and albendazole; for schistosomiasis and tapeworms it is praziquantel.
Types
Many early treatments were herbal, such as the oil of herbs of the genus Chenopodium that were given as anthelmintic treatment for centuries. In 1908 it was found that the active constituent was ascaridole. From the 1920s to the 1970s, halogenated hydrocarbons were used in a string of continually more efficacious anthelmintics, until their underlying host toxicity was revealed. The modern broad-spectrum anthelmintics were developed by pharmaceutical companies that can afford the screening programs and testing systems that modern drug development involves.Historically, there have been three main classes of broad-spectrum anthelmintics. These are benzimidazoles, imidazothiazoles/tetrahydropyrimidines, and macrocyclic lactones.
- Benzimidazoles disrupt parasitic worms' microtubules, a critical part of their cells' cytoskeletons. Drugs in this category include:
- * Albendazole – effective against threadworms, roundworms, whipworms, tapeworms, hookworms
- * Mebendazole – effective against various nematodes
- * Thiabendazole – effective against various nematodes
- * Fenbendazole – effective against various parasites
- * Triclabendazole – effective against liver flukes
- * Flubendazole – effective against most intestinal parasites
- Imidathiazoles/tetrahydropyrimidines are nicotinic acetylcholine receptor agonists, including:
- * Levamisole
- * Pyrantel pamoate – effective against most parasitic nematodes of the GIT
- Macrocyclic lactones are glutamate-gated chloride channel agonists, and include:
- * Avermectins - effective against most common intestinal worms, except tapeworms, for which praziquantel is commonly used in conjunction for mass dewormings
- Drugs not members of these three main categories include:
- * Diethylcarbamazine – effective against Wuchereria bancrofti, Brugia malayi, Brugia timori, and Loa loa
- * Salicylanilide – mitochondrial un-couplers such as Niclosamide and Oxyclozanide, and are used only for flatworm infections
- * Nitazoxanide – readily kills Ascaris lumbricoides, and also possesses antiprotozoal effects. This is also an ascaricide.
- * Oxamniquine – effective against flatworms
- * Praziquantel – effective against flatworms
- * Octadepsipeptides – effective against a variety of gastrointestinal helminths
- * Monepantel – effective against a variety of nematodes including those resistant to other anthelmintic classes
- * Spiroindoles – effective against a variety of nematodes including those resistant to other anthelmintic classes
- * Artemisinin – shows anthelmintic activity
Anthelmintic resistance
Both in vitro can be used to detect anthelmintic resistance.
Treatment with an antihelmintic drug kills worms whose phenotype renders them susceptible to the drug, but resistant parasites survive and pass on their "resistance" genes. Resistant varieties accumulate, and treatment failure finally occurs.
The ways in which anthelmintics are used have contributed to a major anthelmintic resistance issue worldwide. From the 1950s to the 1980s, new classes of effective and inexpensive anthelmintics were made available every decade, leading to excessive use throughout agriculture and disincentivizing alternative anti-nematodal strategies. Developing new anthelmintics is time-consuming and expensive therefore, it is important to use the ones that currently exist in a way that will minimize or prevent the development of anthelmintic resistance. Some of these methods are ensuring animals are not being underdosed, rotating the anthelmintics that are being used, and rotation of grazing land to reduce the parasite population. Other methods include using a combination of multiple different anthelmintics, and the use of refugia based strategies. Refugia refers to the portion of the parasite population not being exposed to anthelmintics. This population is therefore not undergoing selection for resistance. Use of refugia helps to slow down the speed of evolution of resistance to anthelmintic drugs. Due to the problem of anthelmintic resistance, research into alternatives is continuing, including in the field of rational drug design.