Embodied cognition


Embodied cognition represents a diverse group of theories which investigate how cognition is shaped by the bodily state and capacities of the organism. These embodied factors include the motor system, the perceptual system, bodily interactions with the environment, and the assumptions about the world that shape the functional structure of the brain and body of the organism. Embodied cognition suggests that these elements are essential to a wide spectrum of cognitive functions, such as perception biases, memory recall, comprehension and high-level mental constructs and performance on various cognitive tasks.
The embodied mind thesis challenges other theories, such as cognitivism, computationalism, and Cartesian dualism. It is closely related to the extended mind thesis, situated cognition, and enactivism. The modern version depends on understandings drawn from up-to-date research in psychology, linguistics, cognitive science, dynamical systems, artificial intelligence, robotics, animal cognition, plant cognition, and neurobiology.

Theory

Proponents of the embodied cognition thesis emphasize the active and significant role the body plays in the shaping of cognition and in the understanding of an agent's mind and cognitive capacities. In philosophy, embodied cognition holds that an agent's cognition, rather than being the product of mere abstract representations of the world, is strongly influenced by aspects of an agent's body beyond the brain itself. An embodied model of cognition opposes the disembodied Cartesian model, according to which all mental phenomena are non-physical and, therefore, not influenced by the body. With this opposition the embodiment thesis intends to reintroduce an agent's bodily experiences into any account of cognition. It is a rather broad thesis and encompasses both weak and strong variants of embodiment. In an attempt to reconcile cognitive science with human experience, the enactive approach to cognition defines "embodiment" as follows:
This double sense attributed to the embodiment thesis emphasizes the many aspects of cognition that researchers in different fields—such as philosophy, cognitive science, artificial intelligence, psychology, and neuroscience—are involved with. This general characterization of embodiment faces some difficulties: a consequence of this emphasis on the body, experience, culture, context, and the cognitive mechanisms of an agent in the world is that often distinct views and approaches to embodied cognition overlap. The theses of extended cognition and situated cognition, for example, are usually intertwined and not always carefully separated. And since each of the aspects of the embodiment thesis is endorsed to different degrees, embodied cognition should be better seen "as a research program rather than a well-defined unified theory".
Some authors explain the embodiment thesis by arguing that cognition depends on an agent's body and its interactions with a determined environment. From this perspective, cognition in real biological systems is not an end in itself; it is constrained by the system's goals and capacities. Such constraints do not mean cognition is set by adaptive behavior alone, but instead that cognition requires "some kind of information processing... the transformation or communication of incoming information". The acquiring of such information involves the agent's "exploration and modification of the environment".
Another approach to understanding embodied cognition comes from a narrower characterization of the embodiment thesis. The following narrower view of embodiment avoids any compromises to external sources other than the body and allows differentiating between embodied cognition, extended cognition, and situated cognition. Thus, the embodiment thesis can be specified as follows:
This thesis points out the core idea that an agent's body plays a significant role in shaping different features of cognition, such as perception, attention, memory, reasoning—among others. Likewise, these features of cognition depend on the kind of body an agent has. The thesis omits direct mention of some aspects of the "more encompassing biological, psychological and cultural context" included in the enactive definition, making it possible to separate embodied cognition, extended cognition, and situated cognition.
In contrast to the embodiment thesis, the extended mind thesis limits cognitive processing neither to the brain nor even to the body, it extends it outward into the agent's world. Situated cognition emphasizes that this extension is not just a matter of including resources outside the head but stressing the role of probing and changing interactions with the agent's world. Cognition is situated in that it is inherently dependent upon the cultural and social contexts within which it takes place.
This conceptual reframing of cognition as an activity influenced by the body has had significant implications. For instance, the view of cognition inherited by most contemporary cognitive neuroscience is internalist in nature. An agent's behavior along with its capacity to maintain representations of the surrounding environment were considered as the product of "powerful brains that can maintain the world models and devise plans". From this perspective, cognizing was conceived as something that an isolated brain did. In contrast, accepting the role the body plays during cognitive processes allows us to account for a more encompassing view of cognition. This shift in perspective within neuroscience suggests that successful behavior in real-world scenarios demands the integration of several sensorimotor and cognitive capacities of an agent. Thus, cognition emerges in the relationship between an agent and the affordances provided by the environment rather than in the brain alone.
In 2002, a collection of positive characterizations summarizing what the embodiment thesis entails for cognition were offered. Professor of Cognitive Psychology Margaret Wilson argues that the general outlook of embodied cognition "displays an interesting co-variation of multiple observations and houses a number of different claims: cognition is situated; cognition is time-pressured; we off-load cognitive work onto the environment; the environment is part of the cognitive system; cognition is for action; offline cognition is bodily-based". According to Wilson, the first three and the fifth claim appear to be at least partially true, while the fourth claim is deeply problematic in that all things that have an impact on the elements of a system are not necessarily considered part of the system. The sixth claim has received the least attention in the literature on embodied cognition, yet it might be the most significant of the six claims as it shows how certain human cognitive capabilities, that previously were thought to be highly abstract, now appear to be leaning towards an embodied approach for their explanation. Wilson also describes at least five main categories that combine both sensory and motor skills. The first three are working memory, episodic memory, and implicit memory; the fourth is mental imagery, and finally, the fifth concerns reasoning and problem solving.

History

The theory of embodied cognition, along with the multiple aspects it comprises, can be regarded as the imminent result of an intellectual skepticism towards the flourishment of the disembodied theory of mind put forth by René Descartes in the 17th century. According to Cartesian dualism, the mind is entirely distinct from the body and can be successfully explained and understood without reference to the body or to its processes.
Research has been done to identify the set of ideas that would establish what could be considered as the early stages of embodied cognition around inquiries regarding the mind-body-soul relation and vitalism in the German tradition from 1740 to 1920. The modern approach and definition of embodied cognition has a relatively short history. Intellectual underpinnings of embodied cognition can be traced back to the influence of philosophy and, more specifically, the phenomenological tradition, psychology, and connectionism in the 20th century.
Phenomenologists such as Edmund Husserl, Martin Heidegger and Maurice Merleau-Ponty served as a source of inspiration for what would later be known as the embodiment thesis. They stood up against the mechanistic and disembodied approach to the explanation of the mind by emphasizing the fact that there are aspects of human experiences that cannot simply be explained by a model of the mind as computation of inner symbols. From a phenomenological standpoint, such aspects remain unaccountable if, as in Cartesian dualism, they are not "deeply rooted in the physical nuts-and-bolts of the interacting agent". Maurice Merleau-Ponty in his Phenomenology of Perception, for example, rejects the Cartesian idea that people's primary mode of being in the world is thinking and proposes corporeity, that is, the body itself as the primary site for knowing the world, and perception as the medium and the pre-reflective foundation of experience. So stated, the body is the primary condition for experience since it comprises a collection of active meanings about the world and its objects. The body also provides the first-person perspective with which one experiences the world and opens up multiple possibilities for being.
Evidence from experiments and observations in research of how behaviour is constructed conducted in the 1920-30s by Nikolai Bernstein also brought his attention to the role of the body in cognition. Bernstein gave extensive example of how people change their own posture during perception of someone doing intense physical tasks.
The appreciation of the phenomenological mindset allows us to not overlook the influence that phenomenology's speculative but systematic reflection on the mind-body-world relation had in the growth and development of the core ideas which embodied cognition comprises. From a phenomenological perspective "all cognition is embodied, interactive, and embedded in dynamically changing environments". These constitute the set of beliefs which proponents of embodied cognition such as cognitive scientists Francisco Varela, Eleonor Rosch, and Evan Thompson will revise later on and seek to reintroduce in the scientific study of cognition under the name of enaction. Enactivism reclaims the importance of considering the biodynamics of the living organism to understand cognition by gathering ideas from fields such as biology, psychoanalysis, Buddhism, and phenomenology. According to this enactive approach, organisms obtain knowledge or develop their cognitive capacities through a perception–action relationship with a mutually determining environment.
This basic idea of experience as the product of an individual's active perception–action interactions with its surrounding is also traceable to the American contextualist or pragmatist tradition in works such as Art As Experience by American psychologist John Dewey. For Dewey, experiences affect people's personal lives as they are the by-product of continuous and commutative interactions of a biological and organic self with the world. These lived experiences should serve as the foundation to build upon.
On the bases of empirical grounds, and in opposition to those philosophical traditions that belittled the importance of the body to understand cognition, research on embodiment have demonstrated the relationship between cognition and bodily process. Thus, understanding cognition requires one to consider and investigate the sensory and motor mechanism that enables it. Cognitive scientist George Lakoff, for example, holds that reasoning and language arise from the nature of bodily experiences and, thus, even people's own metaphors have bodily references. Peter Putnam and Robert W. Fuller advanced a version of the computational theory of mind, perceptual control theory and neuroplasticity wherein rules become fixed in the brain's structure based on trial and error and motor neuron feedback loops.
Since the 1950s, encouraged by progress in informatics, researchers began to create digital models of the processes by which sensory input is selected by the brain, stored in the memory, connected to existing knowledge and used for elaboration. These traditional computationalists views of cognition that were typical in the 1950s–1980s are now considered implausible because there is no continuity with the cognitive skills that would have been demanded and developed by the ancestors of the human species.
The earlier version of the concept of embodiment in cognition was offered in 1997-1999 by Irina Trofimova who called the experimentally proven effects of embodiment in meaning attribution as "projection through capacities". Some researchers indeed argue that this algorithmic focus on mental activities ignores the fact that human beings engage with evolutionary pressures using their entire bodies. Margaret Wilson considers the embodied cognition perspective as fundamentally an evolutionary one, viewing cognition as a set of abilities that built upon, and still reflects, the structure of physical bodies and how human brains evolved to manage those bodies. The theory of evolution emphasises that thanks to their bipedal gait, early humans did not need their 'forepaws' for locomotion, facilitating them to manipulate the environment with the aid of tools. One researcher goes even further, positing that the multiple opportunities provided by human hands shape people's concepts of the mind. One example is that people often conceive cognitive processes in manual terms, such as 'grasping an idea'.
J.J. Gibson developed his theory on ecological psychology that entirely contradicted the computationalist idea of understanding the mind as information processing which by that time had permeated psychology—both in theory and practice. Gibson particularly disagreed with the way his contemporaries understood the nature of perception. Computationalist perspectives, for example, consider perceptual objects as an unreliable source of information upon which the mind must do some sort of inference. Gibson view perceptual processes as the product of the relation between a moving agent and its relationship with a specific environment. Similarly, Varela and colleague's argue that both cognition and the environment are not pre-given; instead, they are enacted or brought forth by the agent's history of sensorimotor and structurally coupled activities.
Connectionism also put forth a critique to the computationalist commitments yet granting the possibility of some sort of non-symbolic computational processes to take place. According to the connectionist thesis, cognition as a biological phenomenon can be explained and understood through the interaction and dynamics of artificial neural networks. Given the traces of abstraction that remain in the inputs and outputs through which connectionist neural networks carry its computations, connectionism is said to be not so far from computationalism and unable to cope with both the challenge of dealing with the details involved during perceiving and acting and explaining higher level cognition. Likewise, connectionism's take on cognition is biologically inspired by the behavior and interaction of single neurons, yet its connections to the embodiment thesis in general, and to perception–action interactions in particular, are not clearly outlined or straightforward.
By early 2000, O'Regan, J. K. and Noë, A. provided empirical evidence against the computationalist mindset arguing that although cortical maps exist in the brain and their patterns of activation give rise to perceptual experiences, they alone are unable to fully explain the subjective character of experience. Namely, it is unclear how internal representations generate conscious perception. Given this ambiguity, O'Regan, J. K. and Nöe, A. put forth what would later be known as "sensorimotor contingencies" in an attempt to understand the changing character of sensations as actors act in the world. According to the SMC theory,
Ever since the late 20th century and recognizing the significant role the body plays for cognition, the embodied cognition theory has gained popularity, it has been the subject of multiple articles in different research areas, and the mainstream approach to what Shapiro and Spaulding call the "embodied make-over". A consequence of this widespread acceptance of the embodiment thesis is the emergence of 4E features of cognition. Under 4E cognition it is no longer thought of as being instantiated in or by a single organism, rather: