Priming (psychology)
Priming is a concept in psychology and psycholinguistics to describe how exposure to one stimulus may influence a response to a subsequent stimulus, without conscious guidance or intention. The priming effect is the positive or negative effect of a rapidly presented stimulus on the processing of a second stimulus that appears shortly after. Generally speaking, the generation of priming effect depends on the existence of some positive or negative relationship between priming and target stimuli. For example, the word nurse might be recognized more quickly following the word doctor than following the word bread. Priming can be perceptual, associative, repetitive, positive, negative, affective, semantic, or conceptual. Priming effects involve word recognition, semantic processing, attention, unconscious processing, and many other issues, and are related to differences in various writing systems. How quickly this effect occurs is contested; some researchers claim that priming effects are almost instantaneous.
Priming works most effectively when the two stimuli are in the same modality. For example, visual priming works best with visual cues and verbal priming works best with verbal cues. But priming also occurs between modalities, or between semantically related words such as "doctor" and "nurse".
In 2012, a great amount of priming research was thrown into doubt as part of the replication crisis. Many of the landmark studies that found effects of priming were unable to be replicated in new trials using the same mechanisms. The experimenter effect may have allowed the people running the experiments to subtly influence them to reach the desired result, and publication bias tended to mean that shocking and positive results were seen as interesting and more likely to be published than studies that failed to show any effect of priming. The result is that the efficacy of priming may have been greatly overstated in earlier literature, or have been entirely illusory.
Types
Positive and negative priming
The terms positive and negative priming refer to when priming affects the speed of processing. A positive prime speeds up processing, while a negative prime lowers the speed to slower than un-primed levels. Positive priming is caused by simply experiencing the stimulus, while negative priming is caused by experiencing the stimulus, and then ignoring it. Positive priming effects happen even if the prime is not consciously perceived. The effects of positive and negative priming are visible in event-related potential readings.Positive priming is thought to be caused by spreading activation. This means that the first stimulus activates parts of a particular representation or association in memory just before carrying out an action or task. The representation is already partially activated when the second stimulus is encountered, so less additional activation is needed for one to become consciously aware of it.
Negative priming is more difficult to explain. Many models have been hypothesized, but currently the most widely accepted are the distractor inhibition and episodic retrieval models. In the distractor inhibition model, the activation of ignored stimuli is inhibited by the brain. The episodic retrieval model hypothesizes that ignored items are flagged 'do-not-respond' by the brain. Later, when the brain acts to retrieve this information, the tag causes a conflict. The time taken to resolve this conflict causes negative priming. Although both models are still valid, recent scientific research has led scientists to lean away from the distractor inhibitor model.
Perceptual and conceptual priming
The difference between perceptual and conceptual types of priming is whether items with a similar form or items with a similar meaning are primed, respectively.Perceptual priming is based on the form of the stimulus and is enhanced by the match between the early and later stimuli. Perceptual priming is sensitive to the modality and exact format of the stimulus. An example of perceptual priming is the identification of an incomplete word in a word-stem completion test. The presentation of the visual prime does not have to be perfectly consistent with later testing presentations in order to work. Studies have shown that, for example, the absolute size of the stimuli can vary and still provide significant evidence of priming.
Conceptual priming is based on the meaning of a stimulus and is enhanced by semantic tasks. For example, the word table will show conceptual priming effects on the word chair, because the words belong to the same category.
Repetition priming
Repetition priming, also called direct priming, is a form of positive priming. When a stimulus is experienced, it is also primed. This means that later experiences of the stimulus will be processed more quickly by the brain. This effect has been found on words in the lexical decision task. There are multiple theories and models that reason why repetition priming might exist. For example, facilitation suggests that when a stimulus overlaps with existing or previously seen representation than information will travel faster.Semantic priming
In semantic priming, the prime and the target are from the same semantic category and share features. For example, the word dog is a semantic prime for wolf, because the two are similar animals. Semantic priming is theorized to work because of spreading activation within associative networks. When a person thinks of one item in a category, similar items are stimulated by the brain. Even if they are not words, morphemes can prime for complete words that include them. An example of this would be that the morpheme 'psych' can prime for the word 'psychology'.In support with further detail, when an individual processes a word sometimes that word can be affected when the prior word is linked semantically. Previous studies have been conducted, focusing on priming effects having a rapid rise time and a hasty decay time. For example, an experiment by Donald Foss researched the decay time of semantic facilitation in lists and sentences. Three experiments were conducted and it was found that semantic relationships within words differs when words occur in sentences rather than lists. Thus, supporting the ongoing discourse model. However, the underlying cognitive mechanisms of semantic representation has been established over a few decades, the research has suffered from small sample sizes and lack of linguistic and cultural diversity. Nevertheless, recently it has been shown that the semantic priming is a robust and generalizable effect across languages and cultures.
Associative priming
In associative priming, the target is a word that has a high probability of appearing with the prime, and is "associated" with it but not necessarily related in semantic features. The word dog is an associative prime for cat, since the words are closely associated and frequently appear together. A similar effect is known as context priming. Context priming works by using a context to speed up processing for stimuli that are likely to occur in that context. A useful application of this effect is reading written text. The grammar and vocabulary of the sentence provide contextual clues for words that will occur later in the sentence. These later words are processed more quickly than if they had been read alone, and the effect is greater for more difficult or uncommon words.Response priming
In the psychology of visual perception and motor control, the term response priming denotes a special form of visuomotor priming effect. The distinctive feature of response priming is that prime and target are presented in quick succession and are coupled to identical or alternative motor responses. When a speeded motor response is performed to classify the target stimulus, a prime immediately preceding the target can thus induce response conflicts when assigned to a different response as the target. These response conflicts have observable effects on motor behavior, leading to priming effects, e.g., in response times and error rates. A special property of response priming is its independence from visual awareness of the prime: For example, response priming effects can increase under conditions where visual awareness of the prime is decreasing.Masked priming
The masked priming paradigm has been widely used in the last two decades in order to investigate both orthographic and phonological activations during visual word recognition.The term "masked" refers to the fact that the prime word or pseudoword is masked by symbols such as ###### that can be presented in a forward manner or a backward manner. These masks enable to diminish the visibility of the prime. The prime is usually presented less than 80 ms in this paradigm. In all, the short SOA associated with the masking make the masked priming paradigm a good tool to investigate automatic and irrespective activations during visual word recognition. Forster has argued that masked priming is a purer form of priming, as any conscious appreciation of the relationship between the prime and the target is effectively eliminated, and thus removes the subject's ability to use the prime strategically to make decisions. Results from numerous experiments show that certain forms of priming occur that are very difficult to occur with visible primes. One such example is form-priming, where the prime is similar to, but not identical to the target. Form priming is known to be affected by several psycholinguistic properties such as prime-target frequency and overlap. If a prime is higher frequency than the target, lexical competition occurs, whereas if the target has a higher frequency than the prime, then the prime pre-activates the target and if the prime and target differ by one letter and one phoneme, the prime competes with the target, leading to lexical competition. Not only is it affected by the prime and target, but also by individual differences such that people with well-established lexical representations are more likely to show lexical competition than people with less-established lexical representation.